第六单元 整理和复习
1.数 与 代 数
第1课时 数 的 认 识
知识板块
要点梳理
具体内容
数的认识
数的意义
1.整数的意义:像-3,-2,-1,0,1,2,3…这样的数统称整数。整数的个数是无限的。没有最小的整数,也没有最大的整数。自然数是整数的一部分。
2.自然数的意义:在数物体个数的时候,用来表示物体个数的1,2,3,4,5,6…叫作自然数。一个物体也没有用0表示。自然数的个数是无限的。最小的自然数是0,没有最大的自然数。
3.正、负数的意义:像1,2,3…这样的数叫作正数;像-3,-2,-1…这样的数叫作负数。
4.分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫作分数。
5.百分数的意义:表示一个数是另一个数的百分之几的数叫百分数,也叫作百分率或百分比。百分数通常用“%”表示。
6.小数的意义:把整数“1”平均分成10份,100份,1000份,……这样的一份或几份是十分之一,百分之一,千分之一……或十分之几,百分之几,千分之几……还可以用小数表示,小数的单位是0.1,0.01,0.001……它是十进制分数的另一种表现形式。
计数单位和数位
1.计数单位:个、十、百……以及十分之一、百分之一……都是计数单位。
2.数位:各个计数单位所占的位置,叫作数位。数位是按一定的顺序排列的。
3.十进制计数法:它的特点是每相邻的两个计数单位之间的进率都是“十”,就是十个较低的计数单位可以进成一个较高的计数单位(通常所说的“逢十进一”)。这种以“十”为基础进位的方法,叫作十进制计数法。
4.数的分级:按照我国的计数习惯,整数从个位起,每四个数位是一级。个位、十位、百位、千位是个级,表示多少个一;万位、十万位、百万位、千万位是万级,表示多少个万;亿位、十亿位、百亿位、千亿位是亿级,表示多少个亿……
知识板块
要点梳理
具体内容
数的认识
倍数和因数
1.倍数和因数的意义:a÷b=c(a、b、c均为整数,且b≠0)其中a是b和c的倍数,b和c就是a的因数。倍数和因数是相互依存的。
2.2、3、5的倍数特征:(1)2的倍数特征:个位上的数字是0,2,4,6,8。(2)3的倍数特征:各个数位上的数字的和是3的倍数。(3)5的倍数的特征:个位上的数字是0或5。
3.奇数和偶数:(1)奇数:在自然数中,不是2的倍数的数叫作奇数。(2)偶数:在自然数中,是2的倍数的数叫作偶数。
4.质数和合数:(1)质数的意义:一个数,如果只有1和它本身两个因数,这样的数叫作质数。(2)偶数:一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。
5.分解质因数:(1)质因数:每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫作这个合数的质因数。(2)分解质因数:把一个合数用质因数相乘的形式表示出来,叫作分解质因数。(3)分解质因数的方法:把一个合数分解质因数,通常运用短除法。
6.最大公因数和最小公倍数:(1)最大公因数:几个数公有的因数,叫作这几个数的公因数。其中最大的一个叫作这几个数的最大公因数。(2)最小公倍数:几个数公有的倍数,叫作这几个数的公倍数。其中最小的一个叫作这几个数的最小公倍数。
小数点位置移
动引起小数大
小变化的规律
小数点向右移动一位、两位、三位……该数就扩大到原来的10倍、100倍、1000倍……小数点向左移动一位、两位、三位……该数就缩小到原来的、、……
教材知识荟
【考点一】 数的意义
在78,+,0,-4,-,+,+7.8,-1,+9中正数有( ),负数有( ),自然数有( ),整数有( ),小数有( ),分数有( )。
思路分析:根据正数,负数,自然数,整数,小数,分数的概念,以及它们之间的关系加以区分。
解答: 正数有:78,+,+,+7.8,+9; 负数有:-4,-,-1; 自然数有:78,0,+9; 整数有:78,0, -4,-1,+9; 小数有:+7.8; 分数有:+,-,+。
【练习】
1.填空。
(1)0,4,852,1500,400都是( )数,也都是( )数。
(2)4.57878…可以简写为( )。
(3) kg表示把( )平均分成( )份,取其中的( )份;也可以表示把( )平均分成( )份,取其中的( )份。
(4)把一根长1米的木棒锯成同样长的小段,5次锯完,每小段占全长的( ),每段长( )。
答案:(1)整 自然 (2)4.5 (3)1 kg 6 5 5kg 6 1 (4) 米
2.判断。
(1)一个数先缩小到原来的,再扩大到原来的100倍,它的小数点的位置实际没有变化。 ( )
(2)1吨的和3吨的同样重。 ( )
(3) m=0.25 m=25% m。 ( )
(4)0是最小的整数。 ( )
答案:(1)√ (2)√ (3)× (4)×
3.选择。
(1)小于1的最大的两位数是( )。
A.0.9 B.0.09 C.0.99
(2)比小,且比大的分数有( )个。
A.1 B.2 C.无数
(3)商店里九八折出售商品,比原价( )。
A.提高2% B.降低2% C.降低98%
(4)下列数中,( )不能写成整数。
A.200% B.6.00 C.
答案:(1)C (2)C (3)B (4)C
【考点二】计数单位和数位
3.2和3.20的计数单位相同吗?
思路分析:判断小数的计数单位,关键看它是几位小数。3.2是一位小数,它的计数单位是0.1或,3.20是两位小数,它的计数单位是0.01或。
解答:不相同。
六亿零四百五十万五千米写作( ),改写成用“亿”作单位的数是( ),省略亿位后面的尾数是( )。
思路分析:先按整数的写法写出此数,即在亿位上写“6”,在万级中写“450”,在个级中写“5000”,千万位上没有数,用“0”占位。再把写出的数改写成用“亿”作单位的数,最后“四舍五入”到亿位。
解答:604505000米 6.04505亿米 6亿米
【练习】
1.填空。
(1)3的分数单位是( ),它含有( )个这样的分数单位。
(2)10个0.001是( ),100个0.01是( ),1000个10是( )。
(3)由6个1、9个0.1和6个0.01组成的小数是( ),它表示v ( )。
答案:(1) 31 (2)0.01 1 10000 (3)6.96 696个百分之一
2.判断。
(1)1个0.01与99个的和是1。 ( )
(2)的分数单位与0.08的计数单位相差0.12。 ( )
(3)0.8和0.80的大小相等,但计数单位不同。 ( )
答案:(1)√ (2)× (3)√
3.选择。
(1)6.56中百分位上的“6”是个位上的“6”的( )。
A. B. C.
(2)不改变1.5的大小,改成用“千分之一”作单位的数是( )。
A.0.015 B.1.500 C.0.150
(3)在5.8的末尾添上一个0,原数的计数单位就( )。
A.扩大到原来的10倍 B.不变 C.缩小到原来的
答案:(1)B (2)B (3)C
【考点三】倍数和因数
把30分解质因数是( )。
A.30=1×2×3×5 B.30=5×6 C.30=2×3×5 D. 2×3×5=30
思路分析:分解质因数是把一个合数写成几个质因数相乘的形式。它不同于乘法算式,而是把被分解的合数写在等号左侧,显然D是错的,它是求积;A中1不是质数,B中6是合数,所以选C。
解答:C
一袋饼干,如果平均分给4个小朋友,还剩下3块;如果平均分给5个小朋友,还缺1块;如果平均分给6个小朋友,还缺1块。这袋饼干至少有多少块?
思路分析:根据题意,如果这袋饼干再多1块,那么平均分给4个、5个或6个小朋友就都正好了。也就是说这袋饼干数加上1块正好是4,5,6的公倍数。因此,求这袋饼干至少有多少块就是求4,5,6的最小公倍数减1是多少。4、5、6的最小公倍数是60。
解答:4,5,6的最小公倍数是2×2×3×5=60 60-1=59(块)
答:这袋饼干至少有59块。
【练习】
1.填空。
(1)20以内的质数有( ),合数有( )。
(2)三个连续的偶数,最大的一个是n,另外两个分别是( )和( )。
(3)既是3的倍数又是5的倍数的最大两位数是( )。
(4)两个质数的和是16,这两个质数的积是( )。
答案:(1)2、3、5、7、11、13、17、19 4、6、8、9、10、12、14、15、16、18、20 (2)n-2 n-4 (3)90 (4)39或55
2.判断。
(1)一个自然数不是偶数,就是奇数。 ( )
(2)一个自然数不是质数,就是合数。 ( )
(3)互为质数的两个数的乘积一定是合数。 ( )
(4)因为1.8÷6=0.3,所以1.8是6的倍数,3是1.8的因数。 ( )
答案:(1)√ (2)× (3)√ (4)×
3.选择。
(1)求12和15的最大公因数,必须包含12和15( )质因数。
A.所有的 B.公有的 C.全部公有的
(2)将24分解质因数正确的式子是( )。
A.24=1×2×2×3 B.24=4×6 C.24=2×2×2×3
(3)两个奇数的和一定是( )数,积一定是( )数。
A.奇 B.偶 C.质
答案:(1)C (2)C (3)B A
【考点四】小数点位置移动引起小数大小变化的规律
去掉0.25的小数点,使它变成整数,原数就增加( )倍;在25后面加上“%”,原数就减少了( )%。
分析:去掉0.25的小数点,就是把0.25的小数点向右移动两位,原数扩大到原来的100倍,即增加(100-1)倍;25后面添上“%”,原数变成25%(即0.25),也就是把原数的小数点向左移动两位,因此,原数缩小到原来的,即减少了原数的(1-1%)。
解答:99 99
【练习】
1.填空。
(1)一个小数,小数点向左移动一位后,再扩大到原来的1000倍,得158,则原小数是( )。
(2)把56.2先缩小到原来的,再把小数点向右移动三位,结果是( )。
答案:(1)1.58 (2)5620
2.判断。
(1)一个数先扩大到原来的100倍,再缩小到原来的,它的小数点位置实际没有变化。 ( )
(2)小数点后面添上0或去掉0,小数的大小不变。 ( )
答案:(1)√ (2)×
我的反思:
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?