人教版七年级数学下册 :6.3 实数 课件(共2课时,18张PPT+29张PPT)

文档属性

名称 人教版七年级数学下册 :6.3 实数 课件(共2课时,18张PPT+29张PPT)
格式 zip
文件大小 2.1MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-02-12 14:36:12

文档简介

(共18张PPT)
6.3 实 数
第六章 实 数
第2课时 实数的性质及运算
1.理解在实数范围内的相反数、倒数、绝对值的意义;
(重点)
2.掌握实数的运算法则,熟练地利用计算器去解决有
关实数的运算问题.(重点)
学习目标

有理数中的几个重要概念:
只有符号不同的两个数,其中一个是另一个的相反数.
①相反数
导入新课
回顾与思考
②绝对值
数轴上表示数a的点到原点的距离叫做数a的绝对值,用︱a︱表示.
③倒数
如果两个数的积是1,则这两个数互为倒数 .
思考:无理数也有相反数吗?怎么表示?有绝对值吗?怎么表示?有倒数吗?怎么表示?

在实数范围内 ,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.
例如:
与 互为相反数
与 互为倒数



实数的性质

讲授新课
例1:分别求下列各数的相反数、倒数和绝对值.
解:(1)∵ =-4,
∴ 的相反数是4,倒数是 ,绝对值是4.
(2)∵ =15,
∴ 的相反数是-15,倒数是 ,绝对值是15.
(3) 的相反数是- ,倒数是 ,绝对值是 .
典例精析
练一练
1. 的相反数是 ,
的相反数是 ,
的相反数是 .
2. -π的绝对值是 ,
= ,
= .
1.a是一个实数,实数a的相反数为-a.
2.①一个正实数的绝对值是它本身;
②一个负实数的绝对值是它的相反数;
③0的绝对值是0.
总结归纳
解: 因为
所以, 的相反数分别为

由绝对值的意义得:

例2 求下列各数的相反数和绝对值:
(1)求 的相反数,
(2)已知 = ,求a.
解:(1)因为 ,3的相反数是-3,所以
的相反数是-3.
(2)因为 , ,所以a的值是 和 .
练一练
填空:设a,b,c是任意实数,则
(1)a+b = (加法交换律);
(2)(a+b)+c = (加法结合律);
(3)a+0 = 0+a = ;
(4)a+(-a) = (-a)+a = ;
(5)ab = (乘法交换律);
(6)(ab)c = (乘法结合律);
b+a
a+(b+c)
a
0
ba
a(bc)



实数的运算

(7) 1 · a = a · 1 = ;
a
(8)a(b+c) = (乘法对于加法的分配律),
(b+c)a = (乘法对于加法的分配律);
(9)实数的减法运算规定为a-b = a+ ;
(10)对于每一个非零实数a,存在一个实数b,
满足a·b = b·a =1,我们把b叫作a的_____;
(11)实数的除法运算(除数b≠0),规定为
a÷b = a· ;
(12)实数有一条重要性质:如果a ≠ 0,b ≠ 0,
那么ab___0.
ab+ac
ba+ca
(-b)
倒数

每个正实数有且只有两个平方根,它们互为相反数.0的平方根是0.
在实数范围内,负实数没有平方根.
在实数范围内,每个实数有且只有一个立方根,而且与它本身的符号相同.
实数的平方根与立方根的性质:
此外,前面所学的有关数、式、方程的性质、法则和解法,对于实数仍然成立.
总结归纳
例3 计算(结果保留小数点后两位):
【方法总结】在实数运算中,如果遇到无理数,并且需要求出结果的近似值时,可按要求的精确度用相应的近似有限小数代替无理数,再进行计算.
例4 计算下列各式的值:
典例精析
1.判断:
(1) ( )
(2) 的绝对值是 ; ( )
(3) 的相反数是 . ( )


×
×
当堂练习
2.下列各数中,互为相反数的是( )
A.3 与 B. 与

C. 与 D. 与
C
5.- 是 的相反数;π-3.14的相反数是 .
3. 的值是( )
A.5 B.-1 C. D.
C
3.14-π
4.比较大小:(1) ;(2) 4.


6.计算
(1)
(2)
(3)
=4

实数

在实数范围内,相反数、绝对值、倒数的意义和有理数范围内的相反数、绝对值、倒数的意义完全一样.
实数的运算

实数的运算律
用计算器计算
实数的大小比较
课堂小结
(共32张PPT)
6.3 实 数
第六章 实 数
第1课时 实 数
1.了解实数的意义,并能将实数按要求进行准确的分类;
2.熟练掌握实数大小的比较方法;(重点)
3.了解实数和数轴上的点一一对应,能用数轴上的点
表示无理数.(难点)
学习目标
导入新课
数学危机
思考: 属于哪一类数呢?


问题1 我们知道有理数包括整数和分数,利用计算器把下列分数写成小数的形式,它们有什么特征?

它们都可以化成有限小数或无限循环小数的形式
讲授新课



实数的概念和分类



问题2 整数能写成小数的形式吗?3可以看成是3.0吗?
可以
思考 由此你可以得到什么结论?
有理数都可以化成有限小数或无限循环小数的形式.
反过来,任何有限小数或无限循环小数也都是有理数.
叫做无理数.
想一想:所有的数都可以写成有限小数和无限循环小数的形式吗?
?
?
π=3.1415926535897932384626…
1.01001000100001…
(两个1之间依次多一个0)
无限不循环小数
不是.如:



思考: 是无理数吗?2.020 020 002 000 02…是无
理数吗?
2.02002000200002…
常见的一些无理数:
(1)含 的一些数;
(2)含开不尽方的数;
(3)有规律但不循环的小数,如1.01001000100001…
它们都是无限不循环小数,是无理数
把下列各数分别填入相应的集合内:
0.101,

有理数集合
无理数集合

...

...

练一练

思考:我们将有理数和无理数统称为实数,仿照有
理数的分类吗?据此你能给实数分类吗?

无理数:
无限不循环小数
有理数:
有限小数或无限循环小数
实 数
(1)按定义分

分数
整数
女孩子
男孩子
妈妈

含开方开不尽的数
有规律但不循环的小数
含有 的数


负实数
正实数
数实
正有理数
负有理数
(2)按性质分
0
正无理数
负无理数


无理数:

有理数:
负实数:
正实数:



例1 将下列各数分别填入下列相应的括号内:
典例精析
对每个数都要进行判断,分类标准不同结果不同.


方法


试一试

你能分辩下列各数是哪个家庭的成员吗?试试看?











.
正数
负数
思考1: 如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点从原点到达A点,则数轴上表示点A的数是多少?
因为圆的周长为π,所以数轴上点A表示的数是无理数π.









0
-2
-1
1
3
2
4





























A



实数与数轴上的点














思考2:你能在数轴上表示出 和 - 吗?
1
1
1
1
把两个边长为1的小正方形通过剪、拼,得到一个大正方形,大正方形的边长为 ,从而说明边长为1的小正方形的对角线为 .









-2
-1
0
1
2




-
每一个实数都可以用数轴上的一个点来表示;
反过来,数轴上的每一点都表示一个实数.
★实数和数轴上的点是一一对应的.


视频:在数轴上表示 和π
例2:如图所示,数轴上A,B两点表示的数分别为-1和 ,点B关于点A的对称点为C,求点C所表示的实数.
解:∵数轴上A,B两点表示的数分别为-1和 ,
∴点B到点A的距离为1+ ,则点C到点A的距离为1+ ,
设点C表示的实数为x,则点A到点C的距离为-1-x,
∴-1-x=1+ ,
∴x=-2-
方法总结
本题主要考查了实数与数轴之间的对应关系,其中利用了:当点C为点B关于点A的对称点时,点C到点A的距离等于点B到点A的距离;两点之间的距离为两数差的绝对值.
例3:如图所示,数轴上A,B两点表示的数分别为
和5.1,则A,B两点之间表示整数的点共有(  )
A.6个 B.5个 C.4个 D.3个
解析:∵ ≈1.414,∴ 和5.1之间的整数有2,3,4,5, ∴A,B两点之间表示整数的点共有4个.
C
【方法总结】数轴上的点与实数一一对应,结合数轴分析,可轻松得出结论.
与有理数一样,实数也可以比较大小:



实数的大小比较

与有理数规定的大小一样,数轴上右边的点表示的实数比左边的点表示的实数大.

原点

0


正实数
负实数
<
1.正数大于零,负数小于零,正数大于负数;
2.两个正数,绝对值大的数较大;
3.两个负数,绝对值大的数反而小.
与有理数一样,在实数范围内:
,2可以分别看作是面积为5,4的正方形的边长,容易说明:面积较大的正方形,它的边长也较大,因此
同样,因为5<9,所以
不用计算器, 与2比较哪个大?与3比较呢?

议一议
典例精析
例4 在数轴上表示下列各点,比较它们的大小,
并用“<”连接它们.
-2 -1 0 1 2 3





1
-2
-2< < 1< <
例5 估计 位于( )
A.0~1之间 B.1~2之间 C.2~3之间 D.3~4之间
B
熟记一些常见数的算术平方根;或用计算器估计.


归纳
例6 比较下列各组数的大小:
解 : (1)因为 12 < 42,
所以 < 4,
所以 -1< 3;
(2)因为 10 > 32 ,
所以
所以
为什么?
为什么?
1.下列说法正确的是( )
A.a一定是正实数
B. 是有理数
C. 是有理数
D.数轴上任一点都对应一个有理数
B
当堂练习
2.有一个数值转换器,原理如下,当输x=81时,输出
的y是 ( )


输入x
取算术平方根
是无理数
输出y

是有理数
A.9 B.3 C. D.±3
C
3.判断快枪手——看谁最快最准!
(1)实数不是有理数就是无理数. ( )
(2)无理数都是无限不循环小数. ( )
(4)无理数都是无限小数. ( )
(3)带根号的数都是无理数. ( )
(5)无理数一定都带根号. ( )
×






×
4.把下列各数填入相应的括号内:
(1)有理数: {
(2)无理数: {
(3)整数: {
(4)负数: {
(5)分数: {
(6)实数: {






5. 比较 与6的大小.
解: ∵37 >36
∴ > 6.
实数

无理数的概念
实数的概念
实数的分类
实数的数轴表示
课堂小结
实数的大小比较
谢谢!