第2课时 垂 线
教学目标
【知识与技能】
1.会用符号表示两直线垂直,并能借助三角板、直尺和方格纸画垂线.
2.通过折纸、动手操作等活动探究归纳垂直的有关性质,会进行简单的应用.
3.初步尝试进行简单的推理.
【过程与方法】
通过从生活中提炼、动手操作、观察交流、猜想验证、简单说理等活动,进一步发展学生的空间观念、推理能力和有条理表达的能力.
【情感态度】
激发学生学习数学的兴趣,体会“数学来源于生活反之又服务于生活”的道理,在解决实际问题的过程中了解数学的价值,通过“简单说理”体会数学的抽象性、严谨性.
【教学重点】
根据点与线之间垂直的线段最短的原理,解决生活中的一些简单问题.
【教学难点】
根据点与线之间垂直的线段最短的原理,解决生活中的一些简单问题.
教学过程
一、情境导入
如图是教室的一幅图片,黑板相邻两边的夹角等于多少度?这样的两条边所在的直线有什么位置关系?
二、合作探究
探究点一:垂 线
【类型一】 运用垂线的概念求角度
如图,直线BC与MN相交于点O,AO⊥BC,∠BOE=∠NOE,若∠EON=20°,求∠AOM和∠NOC的度数.
解析:要求∠AOM的度数,可先求它的余角∠COM.由已知∠EON=20°,结合∠BOE=∠NOE,即可求得∠BON.再根据“对顶角相等”即可求得∠COM的度数;要求∠NOC的度数,根据邻补角的定义即可.
解:∵∠BOE=∠NOE,∴∠BON=2∠EON=2×20°=40°,∴∠NOC=180°-∠BON=180°-40°=140°,∠MOC=∠BON=40°.∵AO⊥BC,∴∠AOC=90°,∴∠AOM=∠AOC-∠MOC=90°-40°=50°,∴∠NOC=140°,∠AOM=50°.
方法总结:(1)由两条直线互相垂直可以得出这两条直线相交所成的四个角中,每一个角都等于90°;(2)在相交线中求角度,一般要利用垂直、对顶角相等、余角、补角等知识.
【类型二】 运用垂线的概念判定两直线垂直
如图所示,已知OA⊥OC于点O,∠AOB=∠COD.试判断OB和OD的位置关系,并说明理由.
解析:由于OA⊥OC,根据垂直的定义,可知∠AOC=90°,即∠AOB+∠BOC=90°.又∠AOB=∠COD,则∠COD+∠BOC=90°,即∠BOD=90°.再根据垂直的定义,得出OB⊥OD.
解:OB⊥OD.理由如下:因为OA⊥OC,所以∠AOC=90°,即∠AOB+∠BOC=90°.因为∠AOB=∠COD,所以∠COD+∠BOC=90°,所以∠BOD=90°,所以OB⊥OD.
方法总结:由垂直这一条件可得两条直线相交构成的四个角为直角,反过来,由两条直线相交构成的角为直角,可得这两条直线互相垂直.判断两条直线垂直最基本的方法就是说明这两条直线的夹角等于90°.
探究点二:垂线的性质(垂线段最短)
如图所示,修一条路将A,B两村庄与公路MN连起来,怎样修才能使所修的公路最短?画出线路图,并说明理由.
解析:连接AB,过点B作BC⊥MN即可.
解:连接AB,作BC⊥MN,C是垂足,线段AB和BC就是符合题意的线路图.因为从A到B,线段AB最短,从B到MN,垂线段BC最短,所以AB+BC最短.
方法总结:与垂线段有关的作图,一般是过一点作已知直线的垂线,作图的依据是“垂线段最短”.
探究点三:点到直线的距离
如图,AC⊥BC,AC=3,BC=4,AB=5.
(1)试说出点A到直线BC的距离;点B到直线AC的距离;
(2)点C到直线AB的距离是多少?
解析:(1)点A到直线BC的距离就是线段AC的长;点B到直线AC的距离就是线段BC的长;(2)过点C作CD⊥AB,垂足为D.点C到直线AB的距离就是线段CD的长,可利用面积求得.
解:(1)点A到直线BC的距离是3;点B到直线AC的距离是4;
(2)过点C作CD⊥AB,垂足为D.S△ABC=BC·AC=AB·CD,所以5CD=3×4,所以CD=.所以点C到直线AB的距离为.
方法总结:点到直线的距离是过这一点作已知直线的垂线,垂线段的长度才是这一点到直线的距离.
课堂检测
1.如图,∠BAC=90°,AD⊥BC,则下列的结论中正确的个数是(C)
①点B到AC的垂线段是线段AB;
②线段AC是点C到AB的垂线段;
③线段AD是点D到BC的垂线段;
④线段BD是点B到AD的垂线段.
A.1个 B.2个 C.3个 D.4个
2.如图,把水渠中的水引到水池C,先过C点向渠岸AB画垂线,垂足为D,再沿垂线CD开沟才能使沟最短,其依据是(C)
A.垂线最短
B.过一点确定一条直线与已知直线垂直
C.垂线段最短
D.以上说法都不对
3.已知线段AB=10cm,在同一平面内,点A,B到直线l的距离分别为6cm,4cm.符合条件的直线l有(C)
A.1条B.2条C.3条D.4条
4.如图,直线a⊥b,∠1=50°,则∠2=40度.
解析:∵a⊥b,
∴∠1与∠2互余,
∵∠1=50°,
∴∠2=90°-∠1
=90°-50°=40°
5.如图,OA⊥OB,OB平分∠MON,若∠AON=120°,求∠AOM的度数.
解:∵OA⊥OB,
∴∠AOB=90°,
∵∠AON=120°,
∴∠BON=120°-90°=30°,
∵OB平分∠MON,
∴∠MOB=∠NOB=30°,
∴∠AOM=90°-30°=60°
6.如图,一辆汽车在直线形公路AB上由A向B行驶,M,N是分别位于公路AB两侧的两所学校.
(1)汽车在公路上行驶时,噪声会对两所学校教学都造成影响,当汽车行驶到何处时,分别对两所学校影响最大?请在图上标出来.
(2)当汽车从A向B行驶时,在哪一段上对两学校影响越来越大?在哪一段上对两学校影响越来越小?在哪一段上对M学校影响逐渐减小而对N学校影响逐渐增大?
解:(1)如图所示:过M作ME⊥AB,过N作NF⊥AB,
当汽车行驶到点E处时,对M学校影响最大;当汽车行驶到点F处时,对N学校影响最大;
(2)由A向E行驶时,对两学校影响逐渐增大;由F向B行驶时,对两学校的影响逐渐减小;由E向F行驶时,对M学校影响逐渐减小而对N学校影响逐渐增大.
【教学说明】可以满足不同层次学生学习的需要,能激发学生认知上的冲突,从而促使他们去探索,去对自身的认知结构进行调整和变革.
三、板书设计
1.垂线的概念:
两条直线相交所成的四个角中,如果有一个角是直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.
2.垂线的作法
3.垂线的性质:
平面内,过一点有且只有一条直线与已知直线垂直;
直线外一点与直线上各点连接的所有线段中,垂线段最短.
教学反思
本节课学习了垂线的概念和垂线的性质,垂直是相交的一种特殊情况,要说明两条相交线的位置关系,一般都是垂直.垂线的两条性质中,不要遗漏条件“在同一平面内”,以保证定理的精确性.对于垂线的概念和性质,要让学生理解记忆
2.1 两条直线的位置关系
第1课时 对顶角、余角和补角
教学目标
【知识与技能】
在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题.
【过程与方法】
经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力.
【情感态度】
激发学生学习数学的兴趣,认识到现实生活中蕴含着大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决.
【教学重点】
1.余角、补角、对顶角的概念.
2.理解等角的余角相等、等角的补角相等、对顶角相等.
【教学难点】
对“在同一平面内的两条直线”含义的理解.理解等角的余角相等,等角的补角相等.
教学过程
一、情境导入
如图,若把剪刀看成是两条相交的直线构成的,那么形成的角中小于平角的角有几个,你能发现它们之间的联系吗?
二、合作探究
探究点一:对顶角及其性质
【类型一】 对顶角的概念
下列图形中,∠1与∠2是对顶角的是( )
解析:选项A中的两个角的顶点没有公共;选项B、D中的两个角的两边没有在互为反向延长线的两条直线上,只有选项C中的两个角符合对顶角的定义.故选C.
方法总结:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.
【类型二】 直接运用对顶角的性质求角度
如图,直线AB、CD,EF相交于点O,∠1=40°,∠BOC=110°,求∠2的度数.
解析:结合图形,由∠1和∠BOC求得∠BOF的度数,根据“对顶角相等”可得∠2的度数.
解:因为∠1=40°,∠BOC=110°(已知),所以∠BOF=∠BOC-∠1=110°-40°=70°.因为∠BOF=∠2(对顶角相等),所以∠2=70°(等量代换).
方法总结:两条相交直线构成对顶角,这时应注意“对顶角相等”这一隐含的结论.在图形中正确找到对顶角,利用角的和差及对顶角的性质找到角的等量关系,然后结合已知条件进行转化.
探究点二:补角和余角
【类型一】 利用补角和余角计算求值
已知∠A与∠B互余,且∠A的度数比∠B度数的3倍还多30°,求∠B的度数.
解析:根据∠A与∠B互余,得出∠A+∠B=90°,再由∠A的度数比∠B度数的3倍还多30°,从而得到∠A=3∠B+30°,再把两个算式联立即可求出∠2的值.
解:∵∠A与∠B互余,∴∠A+∠B=90°.又∵∠A的度数比∠B度数的3倍还多30°,∴设∠B=x,∴∠A=3∠B+30°=3x+30°,∴3x+30°+x=90°,解得x=15°,故∠B的度数为15°.
方法总结:此题把角的关系结合方程问题一起解决,即把相等关系的问题转化为方程问题,利用方程来解决.
【类型二】 补角、余角和角平分线的综合计算
如图,已知∠AOB在∠AOC内部,∠BOC=90°,OM、ON分别是∠AOB,∠AOC的平分线,∠AOB与∠COM互补,求∠BON的度数.
解析:根据补角的性质,可得∠AOB+∠COM=180°.根据角的和差,可得∠AOB+∠BOM=90°.根据角平分线的性质,可得∠BOM=∠AOB.根据解方程,可得∠AOB的度数.根据角的和差,可得答案.
解:∵∠AOB与∠COM互补,∴∠AOB+∠COM=180°,即∠AOB+∠BOM+∠COB=180°.∵∠COB=90°,∴∠AOB+∠BOM=90°.∵OM是∠AOB的平分线,∴∠BOM=∠AOB,即∠AOB+∠AOB=90°,解得∠AOB=60°,∴∠AOC=∠BOC+∠AOB=90°+60°=150°.∵ON平分∠AOC得∠AON=∠AOC=×150°=75°.由角的和差,∴∠BON=∠AON-∠AOB=75°-60°=15°.
方法总结:本题考查了余角与补角及角平分线的相关知识,利用了补角的性质,角的和差,角平分线的性质进行计算,解决问题一定要结合图形认真分析,做到数形结合.
【类型三】 补角和余角的性质
如图,将一副直角三角尺的直角顶点C叠放在一起.
(1)如图①,若CE是∠ACD的角平分线,那么CD是∠ECB的角平分线吗?并简述理由;
(2)如图②,若∠ECD=α,CD在∠BCE的内部,请你猜想∠ACE与∠DCB是否相等?并简述理由;
(3)在(2)的条件下,请问∠ECD与∠ACB的和是多少?并简述理由.
解析:(1)首先根据直角三角板的特点得到∠ACD=90°,∠ECB=90°.再根据角平分线的定义计算出∠ECD和∠DCB的度数即可;(2)∠ACE与∠DCB相等,根据“等角的余角相等”即可得到答案;(3)根据角的和差关系进行等量代换即可.
解:(1)CD是∠ECB的角平分线.理由如下:∵∠ACD=90°,CE是∠ACD的角平分线,∴∠ECD=45°.∵∠ECB=90°,∴∠DCB=90°-45°=45°,∴∠ECD=∠DCB,∴CD是∠ECB的角平分线;
(2)∠ACE=∠DCB.理由如下:∵∠ACD=90°,∠BCE=90°,∠ECD=α,∴∠ACE=90°-α,∠DCB=90°-α,∴∠ACE=∠DCB;
(3)∠ECD+∠ACB=180°.理由如下:∠ECD+∠ACB=∠ECD+∠ACE+∠ECB=∠ACD+∠ECB=90°+90°=180°.
方法总结:此题主要查考了角的计算,关键是根据图形分清角之间的和差关系.
当堂检测
1.在下列4个判断中:
①在同一平面内,不相交的两条线段一定平行;②不相交的两条直线一定平行;③在同一平面内,不平行的两条射线一定相交;④在同一平面内,不平行的两条直线一定相交.其中正确的个数是(D)
A.4 B.3 C.2 D.1
2.如果一个角的补角是150°,那么这个角的余角的度数是60°
3.已知∠α=24°,且∠α与∠β互余,∠β与∠γ互余,则∠γ的余角和补角的度数分别为66°,156°.
4.判断.
(1)一个角有余角也一定有补角.( )
(2)一个角有补角也一定有余角.( )
(3)一个角的补角一定大于这个角.( )
答案:(1)√(2)×?(3)×?
5.填表:
从中,你发现一个锐角的补角比它的余角大 .
答案:表格第一行:58°,148°;
第二行:27°37′,117°37′;
第三行:90°-x,180°-x;
空格:90°.
6.已知一个角的补角是它的余角的4倍,求这个角的度数.
分析:可以利用方程思想解决这道题.
解:设这个角为x°,则180-x=4(90-x),
∴x=60.
答:这个角是60°.
7.如图,E、F是直线DG上两点,∠1=∠2,∠3=∠4=90°,找出图中相等的角并说明理由.
解:∠5=∠6,理由是:等角的余角相等.
8.如图,已知AOB是一直线,OC是∠AOB的平分线,∠DOE是直角,图中哪些角互余?哪些角互补?哪些角相等?
解:互余:∠1与∠2,∠1与∠4,∠2与∠3,∠4与∠3;
互补:∠1与∠EOB,∠3与∠EOB,∠4与∠AOD,∠2与∠AOD,∠AOC与∠BOC,
∠AOC与∠DOE,∠BOC与∠DOE.
相等:∠AOC=∠BOC=∠DOE,∠1=∠3,∠2=∠4.
三、板书设计
1.对顶角相等;
2.同角或等角的补角相等,同角或等角的余角相等.
教学反思
本节课学习了对顶角及其性质.教学中可让学生自己画这些角,结合图形说出对顶角的特征.对顶角的识别是易错点,可以结合例题进行练习,让学生在学习中不断纠错,不断进步