2020年苏科新版八年级数学下册《第9章 中心对称图形——平行四边形》单元测试卷
一.选择题(共12小题)
1.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于( )
A.5 B.6 C.7 D.8
2.直角三角形中,两直角边分别是12和5,则斜边上的中线长是( )
A.34 B.26 C.8.5 D.6.5
3.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为( )
A.4.5cm B.18cm C.9cm D.36cm
4.如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC等于( )
A.1 B.2 C.3 D.4
5.在下列给出的条件中,不能判定四边形ABCD一定是平行四边形的是( )
A.AB=CD,AD=BC B.AB∥CD,AD=BC
C.AB∥CD,AB=CD D.AB∥CD,AD∥BC
6.如图,△ABC是等边三角形,P是形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=( )
A.18 B.9
C.6 D.条件不够,不能确定
7.下面的图形中必须由“基本图形”既平移又旋转而形成的图形是( )
A. B.
C. D.
8.如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是( )
A.60° B.90° C.120° D.150°
9.下列图形中,绕着它的中心点旋转60°后,可以和原图形重合的是( )
A.正三角形 B.正方形 C.正五边形 D.正六边形
10.如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD、BC于点E、F,下面的结论:
①点E和点F,点B和点D是关于中心O对称点;
②直线BD必经过点O;
③四边形DEOC与四边形BFOA的面积必相等;
④△AOE与△COF成中心对称.
其中正确的个数为( )
A.1 B.2 C.3 D.4
11.观察如图的图形,既是轴对称图形又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
12.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是( )
A. B.
C. D.
二.填空题(共8小题)
13.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为 .
14.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为 .
15.如图,?ABCD的对角线AC和BD交于点O,若AC=6,BD=10,AB=4,则?ABCD面积等于 .
16.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出 个平行四边形.
17.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了 .
18.如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是 .
19.正方形至少旋转 度才能与自身重合.
20.如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为 .
三.解答题(共8小题)
21.证明:直角三角形斜边上的中线等于斜边的一半.(要求画图并写出已知、求证以及证明过程)
22.如图,D、E、F分别是△ABC三边的中点.
(1)求证:AD与EF互相平分.
(2)若∠BAC=90°,试说明四边形AEDF的形状,并简要说明理由.
23.如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2,求证:
(1)BE=DF;
(2)AF∥CE.
24.如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.
25.将两块斜边长相等的等腰直角三角形按如图A摆放,斜边AB分别交CD、CE于M、N点,
(1)如果把图A中的△BCN绕点C逆时针旋转90°得到△ACF,连接FM,如图B,求证:△CMF≌△CMN:
(2)将△CED绕点C旋转:
①当点M、N在AB上(不与A、B重合)时,线段AM、MN、NB之间有一个不变的关系式,请你写出这个关系式,并说明理由;
②当点M在AB上,点N在AB的延长线上(如图C)时,①中的关系式是否仍然成立?请说明理由.
26.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).
(1)求对称中心的坐标.
(2)写出顶点B,C,B1,C1的坐标.
27.如图,在△ABC中,点D是AB边上的中点,已知AC=4,BC=6,
(1)画出△BCD关于点D的中心对称图形;
(2)根据图形说明线段CD长的取值范围.
28.如图,在平面直角坐标系xOy中,点A(3,3),点B(4,0),点C(0,﹣1).
(1)以点C为中心,把△ABC逆时针旋转90°,画出旋转后的图形△A′B′C;
(2)在(1)中的条件下,
①点A经过的路径的长为 (结果保留π);
②写出点B′的坐标为 .
2020年苏科新版八年级数学下册《第9章 中心对称图形——平行四边形》单元测试卷
参考答案与试题解析
一.选择题(共12小题)
1.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于( )
A.5 B.6 C.7 D.8
【分析】先根据直角三角形的性质求出AC的长,再根据勾股定理即可得出结论.
【解答】解:∵△ABC中,CD⊥AB于D,
∴∠ADC=90°.
∵E是AC的中点,DE=5,
∴AC=2DE=10.
∵AD=6,
∴CD===8.
故选:D.
【点评】本题考查的是直角三角形斜边上的中线,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.
2.直角三角形中,两直角边分别是12和5,则斜边上的中线长是( )
A.34 B.26 C.8.5 D.6.5
【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.
【解答】解:由勾股定理得,斜边==13,
所以,斜边上的中线长=×13=6.5.
故选:D.
【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.
3.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为( )
A.4.5cm B.18cm C.9cm D.36cm
【分析】根据三角形中位线定理可以求得三条边的长度,然后由三角形的周长公式可知原三角形的周长.
【解答】解:∵三角形的三条中位线长分别为2cm,3cm,4cm,
∴原三角形的三条边长分别为2cm×2=4cm,3cm×2=6cm,4cm×2=8cm,
∴原三角形的周长为:4cm+6cm+8cm=18cm;
故选:B.
【点评】本题考查了三角形中位线定理,即三角形的中位线平行于第三边且等于第三边的一半.
4.如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC等于( )
A.1 B.2 C.3 D.4
【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的值.
【解答】解:∵AD∥BC,
∴∠DAE=∠BEA
∵AE平分∠BAD
∴∠BAE=∠DAE
∴∠BAE=∠BEA
∴BE=AB=3
∵BC=AD=5
∴EC=BC﹣BE=5﹣3=2
故选:B.
【点评】本题主要考查了平行四边形的性质,等腰三角形的判定;在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
5.在下列给出的条件中,不能判定四边形ABCD一定是平行四边形的是( )
A.AB=CD,AD=BC B.AB∥CD,AD=BC
C.AB∥CD,AB=CD D.AB∥CD,AD∥BC
【分析】根据平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形进行分析即可.
【解答】解:A、AB=CD,AD=BC能判定四边形ABCD为平行四边形,故此选项不符合题意;
B、AD=CB,AB∥DC不能判定四边形ABCD为平行四边形,故此选项符合题意;
C、AB=CD,AB∥CD能判定四边形ABCD为平行四边形,故此选项不符合题意;
D、AB∥CD,AD∥BC能判定四边形ABCD为平行四边形,故此选项不符合题意;
故选:B.
【点评】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.
6.如图,△ABC是等边三角形,P是形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=( )
A.18 B.9
C.6 D.条件不够,不能确定
【分析】因为要求证明PD+PE+PF的值,而PD、PE、PF并不在同一直线上,构造平行四边形,求出等于AB,根据三角形的周长求出AB即可.
【解答】解:延长EP交AB于点G,延长DP交AC与点H,
∵PD∥AB,PE∥BC,PF∥AC,
∴四边形AFPH、四边形PDBG均为平行四边形,
∴PD=BG,PH=AF.
又∵△ABC为等边三角形,
∴△FGP和△HPE也是等边三角形,
∴PE=PH=AF,PF=GF,
∴PE+PD+PF=AF+BG+FG=AB==6,
故选:C.
【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
7.下面的图形中必须由“基本图形”既平移又旋转而形成的图形是( )
A. B.
C. D.
【分析】根据平移和旋转的概念,结合选项中图形的性质进行分析,排除错误答案.
【解答】解:A、只要平移即可得到,故错误;
B、只能旋转就可得到,故错误;
C、只有两个基本图形旋转得到,故错误;
D、既要平移,又要旋转后才能得到,故正确.
故选:D.
【点评】解决本题要熟练运用平移和旋转的概念.①图形平移前后的形状和大小没有变化,只是位置发生变化;
②旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线段的垂直平分线的交点是旋转中心.
8.如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是( )
A.60° B.90° C.120° D.150°
【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.
【解答】解:旋转角是∠BAB′=180°﹣30°=150°.
故选:D.
【点评】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.
9.下列图形中,绕着它的中心点旋转60°后,可以和原图形重合的是( )
A.正三角形 B.正方形 C.正五边形 D.正六边形
【分析】求出各图的中心角,度数为60°的即为正确答案.
【解答】解:选项中的几个图形都是旋转对称图形,
A、正三角形的旋转最小角是=120°,故此选项错误;
B、正方形的旋转最小角是=90°,故此选项错误;
C、正五边形的旋转最小角是=72°,故此选项错误;
D、正六边形旋转的最小角度是=60°,故此选项正确;
故选:D.
【点评】本题主要考查了旋转对称图形旋转的最小的度数的计算方法.考查图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.
旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.
10.如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD、BC于点E、F,下面的结论:
①点E和点F,点B和点D是关于中心O对称点;
②直线BD必经过点O;
③四边形DEOC与四边形BFOA的面积必相等;
④△AOE与△COF成中心对称.
其中正确的个数为( )
A.1 B.2 C.3 D.4
【分析】由于△ABC与△CDA关于点O对称,那么可得到AB=CD、AD=BC,即四边形ABCD是平行四边形,由于平行四边形是中心对称图形,且对称中心是对角线交点,据此对各结论进行判断.
【解答】解:△ABC与△CDA关于点O对称,则AB=CD、AD=BC,
所以四边形ABCD是平行四边形,即点O就是?ABCD的对称中心,则有:
(1)点E和点F,B和D是关于中心O的对称点,正确;
(2)直线BD必经过点O,正确;
(3)四边形DEOC与四边形BFOA的面积必相等,正确;
(5)△AOE与△COF成中心对称,正确;
其中正确的个数为4个,
故选:D.
【点评】本题主要考查了中心对称的性质以及平行四边形的性质的运用,熟练掌握平行四边形的性质及中心对称图形的性质是解决此题的关键.解题时注意:关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.
11.观察如图的图形,既是轴对称图形又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:第一个图形不是轴对称图形,是中心对称图形;
第二个图形是轴对称图形,也是中心对称图形;
第三个图形是轴对称图形,也是中心对称图形;
第四个图形是轴对称图形,也是中心对称图形.
则既是轴对称图形又是中心对称图形的有3个.
故选:C.
【点评】考查了中心对称图形与轴对称图形的概念:
轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;
中心对称图形是要寻找对称中心,旋转180度后与原图重合.
12.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是( )
A. B.
C. D.
【分析】根据旋转的性质,△AOB绕点O旋转180°得到△DOE,点A与点D、B与E关于点O成中心对称解答.
【解答】解:∵△AOB绕点O旋转180°得到△DOE,
∴作图正确是C选项图形.
故选:C.
【点评】本题考查了利用旋转变换作图,熟记旋转的性质,判断出对应点关于点O对称是解题的关键.
二.填空题(共8小题)
13.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为 2.5 .
【分析】根据勾股定理求出AB,根据直角三角形斜边上中线求出CD=AB即可.
【解答】解:∵∠ACB=90°,AC=3,BC=4,由勾股定理得:AB==5,
∵CD是△ABC中线,
∴CD=AB=×5=2.5,
故答案为:2.5.
【点评】本题主要考查对勾股定理,直角三角形斜边上的中线等知识点的理解和掌握,能推出CD=AB是解此题的关键.
14.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为 12 .
【分析】先根据勾股定理得到OD的长,再根据重心的性质即可得到AO的长.
【解答】解:∵BE⊥AD,BD=10,BO=8,
∴OD==6,
∵AC、BC上的中线交于点O,
∴AO=2OD=12.
故答案为:12.
【点评】此题主要考查了勾股定理的应用以及重心的性质,根据已知得出各边之间的关系进而求出是解题关键.
15.如图,?ABCD的对角线AC和BD交于点O,若AC=6,BD=10,AB=4,则?ABCD面积等于 24 .
【分析】由?ABCD的对角线AC和BD交于点O,若AC=6,BD=10,AB=4,易求得OA与OB的长,又由勾股定理的逆定理,证得AC⊥AB,继而求得答案.
【解答】解:∵四边形ABCD是平行四边形,且AC=6,BD=10,AB=4,
∴OA=OC=AC=3,OB=OD=5,
∴OA2+AB2=OB2,
∴△OAB是直角三角形,且∠BAO=90°,
即AC⊥AB,
∴?ABCD面积为:AB?AC=4×6=24.
故答案为:24.
【点评】此题考查了平行四边形的性质与勾股定理的逆定理.此题难度不大,注意掌握数形结合思想的应用.
16.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出 15 个平行四边形.
【分析】根据全等三角形的性质及平行四边形的判定,可找出现15个平行四边形.
【解答】解:两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出15个平行四边形.
故答案为:15.
【点评】此题主要考查学生对平行四边形的判定的掌握情况和读图能力,注意找图过程中,要做到不重不漏.
17.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了 120° .
【分析】钟表的分针匀速旋转一周需要60分,分针旋转了360°;求经过20分,分针的旋转度数,列出算式,解答出即可.
【解答】解:根据题意得,×360°=120°.
故答案为:120°.
【点评】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°是解答本题的关键.
18.如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是 3 .
【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解.
【解答】解:取线段AC的中点G,连接EG,如图所示.
∵△ABC为等边三角形,且AD为△ABC的对称轴,
∴CD=CG=AB=6,∠ACD=60°,
∵∠ECF=60°,
∴∠FCD=∠ECG.
在△FCD和△ECG中,
,
∴△FCD≌△ECG(SAS),
∴DF=GE.
当EG∥BC时,EG最小,
∵点G为AC的中点,
∴此时EG=DF=CD=BC=3.
故答案为3.
【点评】本题考查了等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出DF=GE.本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.
19.正方形至少旋转 90 度才能与自身重合.
【分析】正方形可以被其对角线平分成4个全等的部分,则旋转的角度即可确定.
【解答】解:正方形可以被其对角线平分成4个全等的部分,则旋转至少360÷4=90度,能够与本身重合.
故答案为:90.
【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.注意基础概念的熟练掌握.
20.如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为 6 .
【分析】由折叠的性质及矩形的性质得到OE垂直平分AC,得到AE=EC,根据AB为AC的一半确定出∠ACE=30°,进而得到OE等于EC的一半,求出EC的长,即为AE的长.
【解答】解:由题意得:AB=AO=CO,即AC=2AB,
且OE垂直平分AC,
∴AE=CE,
设AB=AO=OC=x,
则有AC=2x,∠ACB=30°,
在Rt△ABC中,根据勾股定理得:BC=x,
在Rt△OEC中,∠OCE=30°,
∴OE=EC,即BE=EC,
∵BE=3,
∴OE=3,EC=6,
则AE=6,
故答案为:6
【点评】此题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.
三.解答题(共8小题)
21.证明:直角三角形斜边上的中线等于斜边的一半.(要求画图并写出已知、求证以及证明过程)
【分析】作出图形,然后写出已知,求证,延长CD到E,使DE=CD,连接AE、BE,根据对角线互相平分的四边形是平行四边形判断出四边形AEBC是平行四边形,再根据有一个角是直角的平行四边形是矩形可得四边形AEBC是矩形,然后根据矩形的对角线互相平分且相等可得CD=AB.
【解答】已知:如图,在△ABC中,∠ACB=90°,CD是斜边AB上的中线,
求证:CD=AB;
证明:如图,延长CD到E,使DE=CD,连接AE、BE,
∵CD是斜边AB上的中线,
∴AD=BD,
∴四边形AEBC是平行四边形,
∵∠ACB=90°,
∴四边形AEBC是矩形,
∴AD=BD=CD=DE,
∴CD=AB.
【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质证明,作辅助线,构造出矩形是解题的关键.
22.如图,D、E、F分别是△ABC三边的中点.
(1)求证:AD与EF互相平分.
(2)若∠BAC=90°,试说明四边形AEDF的形状,并简要说明理由.
【分析】(1)如图,连接DE、DF.欲证明AD与EF互相平分,只需证得四边形AEDF是平行四边形即可;
(2)由“有一内角为直角的平行四边形是矩形”证得四边形ADEF为矩形.
【解答】(1)证明:如图,连接DE、DF.
∵D、F分别是BC,AC的中点,
∴DF∥AB,
同理,DE∥AC
∴四边形AEDF是平行四边形.
∴AD与EF互相平分;
(2)由(1)得四边形AEDF为平行四边形.
∵∠BAC=90°
∴四边形ADEF为矩形.
【点评】本题考查的知识比较全面,需要用到三角形中位线定理,平行四边形的判定与性质,以及矩形的判定等.
23.如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2,求证:
(1)BE=DF;
(2)AF∥CE.
【分析】(1)由平行四边形的性质可证得△ABE≌△CDF,则可证得BE=DF;
(2)由(1)可求得AE=CF,则可证得四边形AECF为平行四边形,可证得AF∥CE.
【解答】证明:
(1)∵四边形ABCD为平行四边形,
∴AB∥CD,且AB=CD,
∴∠ABE=∠CDF,
∵∠1=∠2,
∴∠AEB=∠CFD,
在△ABE和CDF中
∴△ABE≌△CDF(AAS),
∴BE=DF;
(2)由(1)可知△ABE≌△CDF,
∴AE=CF,
∵∠1=∠2,
∴AE∥CF,
∴四边形AECF为平行四边形,
∴AF∥CE.
【点评】本题主要考查平行四边形的判定和性质,掌握平行四边形的对边平行且相等是解题的关键.
24.如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.
【分析】由SAS证得△ADE≌△CBF,得出AD=BC,∠ADE=∠CBF,证得AD∥BC,利用一组对边平行且相等的四边形是平行四边形判定四边形ABCD是平行四边形.
【解答】证明:∵AE⊥BD于E,CF⊥BD于F,
∴∠AED=∠CFB=90°,
在△ADE和△CBF中,
∴△ADE≌△CBF(SAS),
∴AD=BC,∠ADE=∠CBF,
∴AD∥BC,
∴四边形ABCD是平行四边形.
【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.
25.将两块斜边长相等的等腰直角三角形按如图A摆放,斜边AB分别交CD、CE于M、N点,
(1)如果把图A中的△BCN绕点C逆时针旋转90°得到△ACF,连接FM,如图B,求证:△CMF≌△CMN:
(2)将△CED绕点C旋转:
①当点M、N在AB上(不与A、B重合)时,线段AM、MN、NB之间有一个不变的关系式,请你写出这个关系式,并说明理由;
②当点M在AB上,点N在AB的延长线上(如图C)时,①中的关系式是否仍然成立?请说明理由.
【分析】(1)根据旋转的性质可得CF=CN,∠ACF=∠BCN,再求出∠ACM+∠BCN=45°,从而求出∠MCF=45°,然后利用“边角边”证明△CMF和△CMN全等即可;
(2)①根据全等三角形对应边相等可得FM=MN,再根据旋转的性质可得AF=BN,∠CAF=∠B=45°,从而求出∠BAF=90°,再利用勾股定理列式即可得解;
②把△BCN绕点C逆时针旋转90°得到△ACF,根据旋转的性质可得AF=BN,CF=CN,∠BCN=∠ACF,再求出∠MCF=∠MCN,然后利用“边角边”证明△CMF和△CMN全等,根据全等三角形对应边相等可得MF=MN,然后利用勾股定理列式即可得解.
【解答】解:(1)∵△BCN绕点C逆时针旋转90°得到△ACF,
∴CF=CN,∠ACF=∠BCN,
∵∠DCE=45°,
∴∠ACM+∠BCN=45°,
∴∠ACM+∠ACF=45°,
即∠MCF=45°,
∴∠MCF=∠MCN,
在△CMF和△CMN中,,
∴△CMF≌△CMN(SAS);
(2)①∵△CMF≌△CMN,
∴FM=MN,
又∵∠CAF=∠B=45°,
∴∠FAM=∠CAF+∠BAC=45°+45°=90°,
∴AM2+AF2=FM2,
∴AM2+BN2=MN2;
②如图,把△BCN绕点C逆时针旋转90°得到△ACF,
则AF=BN,CF=CN,∠BCN=∠ACF,
∵∠MCF=∠ACB﹣∠MCB﹣∠ACF=90°﹣(45°﹣∠BCN)﹣∠ACF=45°+∠BCN﹣∠ACF=45°,
∴∠MCF=∠MCN,
在△CMF和△CMN中,,
∴△CMF≌△CMN(SAS),
∴FM=MN,
∵∠ABC=45°,
∴∠CAF=∠CBN=135°,
又∵∠BAC=45°,
∴∠FAM=∠CAF﹣∠BAC=135°﹣45°=90°,
∴AM2+AF2=FM2,
∴AM2+BN2=MN2.
【点评】本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,此类题目根据相同的思路确定出全等的三角形,然后找出条件是解题的关键.
26.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).
(1)求对称中心的坐标.
(2)写出顶点B,C,B1,C1的坐标.
【分析】(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,据此解答即可.
(2)首先根据A,D的坐标分别是(0,4),(0,2),求出正方形ABCD与正方形A1B1C1D1的边长是多少,然后根据A,D1,D三点的坐标分别是(0,4),(0,3),(0,2),判断出顶点B,C,B1,C1的坐标各是多少即可.
【解答】解:(1)根据对称中心的性质,可得
对称中心的坐标是D1D的中点,
∵D1,D的坐标分别是(0,3),(0,2),
∴对称中心的坐标是(0,2.5).
(2)∵A,D的坐标分别是(0,4),(0,2),
∴正方形ABCD与正方形A1B1C1D1的边长都是:4﹣2=2,
∴B,C的坐标分别是(﹣2,4),(﹣2,2),
∵A1D1=2,D1的坐标是(0,3),
∴A1的坐标是(0,1),
∴B1,C1的坐标分别是(2,1),(2,3),
综上,可得
顶点B,C,B1,C1的坐标分别是(﹣2,4),(﹣2,2),(2,1),(2,3).
【点评】(1)此题主要考查了中心对称的性质和应用,要熟练掌握,解答此题的关键是要明确中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.
(2)此题还考查了坐标与图形的性质的应用,要熟练掌握,解答此题的关键是要明确点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
27.如图,在△ABC中,点D是AB边上的中点,已知AC=4,BC=6,
(1)画出△BCD关于点D的中心对称图形;
(2)根据图形说明线段CD长的取值范围.
【分析】(1)根据中心对称图形的性质找出各顶点的对应点,然后顺次连接即可;
(2)根据三角形的三边关系求解即可.
【解答】解:(1)所画图形如下所示:
△ADE就是所作的图形.
(2)由(1)知:△ADE≌△BDC,
则CD=DE,AE=BC,
∴AE﹣AC<2CD<AE+AC,即BC﹣AC<2CD<BC+AC,
∴2<2CD<10,
解得:1<CD<5.
【点评】本题考查中心对称图形及三角形三边关系的知识,难度适中,解答第(2)问的关键是通过△ADE≌△BDC,将2CD放在△ACE中求解.
28.如图,在平面直角坐标系xOy中,点A(3,3),点B(4,0),点C(0,﹣1).
(1)以点C为中心,把△ABC逆时针旋转90°,画出旋转后的图形△A′B′C;
(2)在(1)中的条件下,
①点A经过的路径的长为 (结果保留π);
②写出点B′的坐标为 (﹣1,3) .
【分析】(1)根据旋转的定义作出点A、B绕点C逆时针旋转90°得到的对应点,再顺次连接可得;
(2)①根据弧长公式列式计算即可;
②根据(1)中所作图形可得.
【解答】解:(1)如图所示,△A′B′C即为所求;
(2)①∵AC==5,∠ACA′=90°,
∴点A经过的路径的长为=,
故答案为:;
②由图知点B′的坐标为(﹣1,3),
故答案为:(﹣1,3).
【点评】本题主要考查作图﹣旋转变换,解题的关键是根据旋转变换的定义作出对应点及弧长公式.