首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教A版(2019)
必修 第二册
第十章 概率
本章复习与测试
第七章 复数 教案(3份)
文档属性
名称
第七章 复数 教案(3份)
格式
zip
文件大小
166.9KB
资源类型
教案
版本资源
人教A版(2019)
科目
数学
更新时间
2020-02-06 20:56:49
点击下载
文档简介
复数的概念
【第一课时】
数系的扩充和复数的概念
教学重难点
教学目标
核心素养
复数的有关概念
了解数系的扩充过程,理解复数的概念
数学抽象
复数的分类
理解复数的分类
数学抽象
复数相等
掌握复数相等的充要条件及其应用
数学运算
【教学过程】
一、问题导入
预习教材内容,思考以下问题:
1.复数是如何定义的?其表示方法又是什么?
2.复数分为哪两大类?
3.复数相等的条件是什么?
二、新知探究
探究点1:
复数的概念
下列命题:
①若a∈R,则(a+1)i是纯虚数;
②若a,b∈R,且a>b,则a+i>b+i;
③若(x2-4)+(x2+3x+2)i是纯虚数,则实数x=±2;
④实数集是复数集的真子集.
其中正确的命题是( )
A.① B.②
C.③ D.④
解析:对于复数a+bi(a,b∈R),当a=0且b≠0时,为纯虚数.对于①,若a=-1,则(a+1)i不是纯虚数,即①错误;两个虚数不能比较大小,则②错误;对于③,若x=-2,则x2-4=0,x2+3x+2=0,此时(x2-4)+(x2+3x+2)i=0不是纯虚数,则③错误;显然,④正确.故选D.
答案:D
判断与复数有关的命题是否正确的方法
(1)举反例:判断一个命题为假命题,只要举一个反例即可,所以解答这种类型的题时,可按照“先特殊,后一般,先否定,后肯定”的方法进行解答.
(2)化代数形式:对于复数实部、虚部的确定,不但要把复数化为a+bi的形式,更要注意这里a,b均为实数时,才能确定复数的实部、虚部.
提醒:解答复数概念题,一定要紧扣复数的定义,牢记i的性质.
探究点2:
复数的分类
当实数m为何值时,复数z=+(m2-2m)i:(1)为实数?(2)为虚数?(3)为纯虚数?
解:(1)当即m=2时,复数z是实数.
(2)当m2-2m≠0且m≠0,即m≠0且m≠2时,复数z是虚数.
(3)当即m=-3时,复数z是纯虚数.
解决复数分类问题的方法与步骤
(1)化标准式:解题时一定要先看复数是否为a+bi(a,b∈R)的形式,以确定实部和虚部.
(2)定条件:复数的分类问题可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)即可.
(3)下结论:设所给复数为z=a+bi(a,b∈R),
①z为实数?b=0;
②z为虚数?b≠0;
③z为纯虚数?a=0且b≠0.
探究点3:
复数相等
(1)(2019·浙江杭州期末考试)若z1=-3-4i,z2=(n2-3m-1)+(n2-m-6)i(m,n∈R),且z1=z2,则m+n=( )
A.4或0 B.-4或0
C.2或0 D.-2或0
(2)若log2(x2-3x-2)+ilog2(x2+2x+1)>1,则实数x的值是________.
解析:(1)由z1=z2,得n2-3m-1=-3且n2-m-6=-4,解得m=2,n=±2,所以m+n=4或0,故选A.
(2)因为log2(x2-3x-2)+ilog2(x2+2x+1)>1,
所以即解得x=-2.
【答案:(1)A
(2)-2
复数相等的充要条件
复数相等的充要条件是“化虚为实”的主要依据,多用来求解参数.解决复数相等问题的步骤是:分别分离出两个复数的实部和虚部,利用实部与实部相等、虚部与虚部相等列方程(组)求解.
注意:在两个复数相等的充要条件中,注意前提条件是a,b,c,d∈R,即当a,b,c,d∈R时,a+bi=c+di?a=c且b=d.若忽略前提条件,则结论不能成立.
三、课堂总结
1.复数的有关概念
(1)复数的定义
形如a+bi(a,b∈R)的数叫做复数,其中i叫做虚数单位,满足i2=-1.
(2)复数集
全体复数所构成的集合C={a+bi|a,b∈R}叫做复数集.
(3)复数的表示方法
复数通常用字母z表示,即z=a+bi(a,b∈R),其中a叫做复数z的实部,b叫做复数z的虚部.
2.复数相等的充要条件
在复数集C={a+bi|a,b∈R}中任取两个数a+bi,c+di(a,b,c,d∈R),我们规定:a+bi与c+di相等当且仅当a=c且b=d.
3.复数的分类
(1)复数z=a+bi(a,b∈R)
(2)复数集、实数集、虚数集、纯虚数集之间的关系
■名师点拨
复数bi(b∈R)不一定是纯虚数,只有当b≠0时,复数bi(b∈R)才是纯虚数.
四、课堂检测
1.若复数z=ai2-bi(a,b∈R)是纯虚数,则一定有( )
A.b=0 B.a=0且b≠0
C.a=0或b=0 D.ab≠0
解析:选B.z=ai2-bi=-a-bi,由纯虚数的定义可得a=0且b≠0.
2.若复数z=m2-1+(m2-m-2)i为实数,则实数m的值为( )
A.-1 B.2
C.1 D.-1或2
解析:选D.因为复数z=m2-1+(m2-m-2)i为实数,
所以m2-m-2=0,解得m=-1或m=2.
3.若复数z=(m+1)+(m2-9)i<0,则实数m的值等于____________.
解析:因为z<0,所以解得m=-3.
答案:-3
4.已知=(x2-2x-3)i(x∈R),则x=________.
解析:因为x∈R,所以∈R,
由复数相等的条件得
解得x=3.
答案:3
【第二课时】
复数的几何意义
教学重难点
教学目标
核心素养
复平面
了解复平面的概念
数学抽象
复数的几何意义
理解复数、复平面内的点、复平面内的向量之间的对应关系
直观想象
复数的模
掌握复数的模的概念,会求复数的模
数学运算
共轭复数
掌握共轭复数的概念,并会求一个复数的共轭复数
数学运算
【教学过程】
一、问题导入
预习教材内容,思考以下问题:
1.复平面是如何定义的?
2.复数与复平面内的点及向量的关系如何?复数的模是实数还是虚数?
3.复数z=a+bi的共轭复数是什么?
二、新知探究
探究点1:
复数与复平面内的点
已知复数z=(a2-1)+(2a-1)i,其中a∈R.当复数z在复平面内对应的点Z满足下列条件时,求a的值(或取值范围).
(1)在实轴上;
(2)在第三象限.
解:(1)若z对应的点在实轴上,则有
2a-1=0,解得a=.
(2)若z对应的点在第三象限,则有
解得-1
故a的取值范围是.
互动探究:
变条件:本例中复数z不变,若点Z在抛物线y2=4x上,求a的值.
解:若z对应的点(a2-1,2a-1)在抛物线y2=4x上,则有(2a-1)2=4(a2-1),即4a2-4a+1=4a2-4,解得a=.
利用复数与点的对应解题的步骤
(1)找对应关系:复数的几何表示法即复数z=a+bi(a,b∈R)可以用复平面内的点Z(a,b)来表示,是解决此类问题的根据.
(2)列出方程:此类问题可建立复数的实部与虚部应满足的条件,通过解方程(组)或不等式(组)求解.
探究点2:
复数与复平面内的向量
在复平面内,复数i,1,4+2i对应的点分别是A,B,C.求平行四边形ABCD的顶点D所对应的复数.
解:法一:由复数的几何意义得A(0,1),B(1,0),C(4,2),则AC的中点为,由平行四边形的性质知该点也是BD的中点,设D(x,y),则所以即点D的坐标为(3,3),所以点D对应的复数为3+3i.
法二:由已知得=(0,1),=(1,0),=(4,2),
所以=(-1,1),=(3,2),
所以=+=(2,3),所以=+=(3,3),
即点D对应的复数为3+3i.
复数与平面向量的对应关系
(1)根据复数与平面向量的对应关系,可知当平面向量的起点在原点时,向量的终点对应的复数即为向量对应的复数,反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.
(2)解决复数与平面向量一一对应的问题时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.
探究点3:
复数的模
(1)设复数z1=a+2i,z2=-2+i且|z1|<|z2|,则实数a的取值范围是( )
A.-1
1
C.a>1 D.a>0
(2)(2019·贵州遵义贵龙中学期中测试)已知复数z满足|z|2-2|z|-3=0,则复数z在复平面内对应点的集合是( )
A.1个圆 B.线段
C.2个点 D.2个圆
解析:(1)由题意得<,即<(a∈R),所以-1
(2)由题意知(|z|-3)(|z|+1)=0,
即|z|=3或|z|=-1,
因为|z|≥0,所以|z|=3,
所以复数z在复平面内对应点的集合是1个圆.
答案:(1)A
(2)A
求解复数的模的思路
解决复数的模的求解问题,应先把复数表示成标准的代数形式,再根据复数的模的定义求解.
三、课堂总结
1.复平面
建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.
2.复数的两种几何意义
(1)复数z=a+bi(a,b∈R)复平面内的点Z(a,b).
(2)复数z=a+bi(a,b∈R) 平面向量.
3.复数的模
复数z=a+bi(a,b∈R)对应的向量为,则的模叫做复数z的模或绝对值,记作|z|或|a+bi|,即|z|=|a+bi|=.
4.共轭复数
(1)一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.
(2)虚部不等于0的两个共轭复数也叫做共轭虚数.
(3)复数z的共轭复数用表示,即如果z=a+bi,那么=a-bi.
■名师点拨
复数z=a+bi在复平面内对应的点为(a,b),复数=a-bi在复平面内对应的点为(a,-b),所以两个互为共轭复数的复数,它们所对应的点关于x轴对称.
四、课堂检测
1.已知z=(m+3)+(m-1)i(m∈R)在复平面内对应的点在第四象限,则实数m的取值范围是( )
A.(-3,1) B.(-1,3)
C.(1,+∞) D.(-∞,-3)
解析:选A.由题意得解得-3
2.在复平面内,O为原点,向量对应的复数为-1-2i,若点A关于实轴的对称点为B,则向量对应的复数为( )
A.-2-i B.2+i
C.1+2i D.-1+2i
解析:选D.由题意可知,点A的坐标为(-1,-2),则点B的坐标为(-1,2),故向量对应的复数为-1+2i.
3.已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是____________.
解析:依题意,可知z=a+i(a∈R),则|z|2=a2+1.因为0<a<2,所以a2+1∈(1,5),即|z|∈(1,).
答案:(1,)
4.若复数z1=2+bi与复数z2=a-4i互为共轭复数,则a=________,b=________.
解析:因为z1与z2互为共轭复数,
所以a=2,b=4.
答案:2 4
复数的四则运算
【第一课时】
复数的加、减运算及其几何意义
教学重难点
教学目标
核心素养
复数加法、减法的运算
掌握复数代数形式的加法、减法运算法则
数学运算
复数加法的几何意义
理解复数代数形式的加法、减法运算的几何意义
直观想象
【教学过程】
一、问题导入
预习教材内容,思考以下问题:
1.复数的加、减法运算法则是什么?运算律有哪些?
2.复数的加、减法的几何意义是什么?
二、新知探究
探究点1:
复数的加、减法运算
(1)计算:(5-6i)+(-2-i)-(3+4i);
(2)设z1=x+2i,z2=3-yi(x,y∈R),且z1+z2=5-6i,求z1-z2.
解:(1)原式=(5-2-3)+(-6-1-4)i=-11i.
(2)因为z1=x+2i,z2=3-yi,z1+z2=5-6i,
所以(3+x)+(2-y)i=5-6i,
所以所以所以z1-z2=(2+2i)-(3-8i)=(2-3)+[2-(-8)]i=-1+10i.
解决复数加、减运算的思路
两个复数相加(减),就是把两个复数的实部相加(减),虚部相加(减).复数的减法是加法的逆运算,两个复数相减,也可以看成是加上这个复数的相反数.当多个复数相加(减)时,可将这些复数的所有实部相加(减),所有虚部相加(减).
探究点2:
复数加、减法的几何意义
已知平行四边形OABC的三个顶点O,A,C对应的复数分别为0,3+2i,-2+4i.
(1)求表示的复数;
(2)求表示的复数.
解:(1)因为=-,
所以表示的复数为-(3+2i),即-3-2i.
(2)因为=-,
所以表示的复数为(3+2i)-(-2+4i)=5-2i.
互动探究:
1.变问法:若本例条件不变,试求点B所对应的复数.
解:因为=+,所以表示的复数为(3+2i)+(-2+4i)=1+6i.所以点B所对应的复数为1+6i.
2.变问法:若本例条件不变,求对角线AC,BO的交点M对应的复数.
解:由题意知,点M为OB的中点,
则=,由互动探究1中知点B的坐标为(1,6),得点M的坐标为,所以点M对应的复数为+3i.
复数加、减法几何意义的应用技巧
(1)复数的加减运算可以转化为点的坐标或向量运算.
(2)复数的加减运算转化为向量运算时,同样满足平行四边形法则和三角形法则.
三、课堂总结
1.复数加、减法的运算法则及加法运算律
(1)加、减法的运算法则
设z1=a+bi,z2=c+di(a,b,c,d∈R)是任意两个复数,则z1+z2=(a+c)+(b+d)i,z1-z2=(a-c)+(b-d)i.
(2)加法运算律
对任意z1,z2,z3∈C,有
①交换律:z1+z2=z2+z1.
②结合律:(z1+z2)+z3=z1+(z2+z3).
2.复数加、减法的几何意义
如图所示,设复数z1=a+bi,z2=c+di(a,b,c,d∈R)对应的向量分别为,,四边形OZ1ZZ2为平行四边形,则与z1+z2对应的向量是,与z1-z2对应的向量是.
四、课堂检测
1.(6-3i)-(3i+1)+(2-2i)的结果为( )
A.5-3i B.3+5i
C.7-8i D.7-2i
解析:选C.(6-3i)-(3i+1)+(2-2i)=(6-1+2)+(-3-3-2)i=7-8i.
2.已知复数z1=(a2-2)-3ai,z2=a+(a2+2)i,若z1+z2是纯虚数,则实数a的值为____________.
解析:由z1+z2=a2-2+a+(a2-3a+2)i是纯虚数,得?a=-2.
答案:-2
3.已知复数z1=-2+i,z2=-1+2i.
(1)求z1-z2;
(2)在复平面内作出复数z1-z2所对应的向量.
解:(1)由复数减法的运算法则得z1-z2=(-2+i)-(-1+2i)=-1-i.
(2)在复平面内作复数z1-z2所对应的向量,如图中.
【第二课时】
复数的乘、除运算
教学重难点
教学目标
核心素养
复数的乘除运算
掌握复数乘除运算的运算法则,能够进行复数的乘除运算
数学运算
复数乘法的运算律
理解复数乘法的运算律
逻辑推理
解方程
会在复数范围内解方程
数学运算
【教学过程】
一、问题导入
预习教材内容,思考以下问题:
1.复数的乘法和除法运算法则各是什么?
2.复数乘法的运算律有哪些?
3.如何在复数范围内求方程的解?
二、新知探究
探究点1:
复数的乘法运算
(1)(1-i)(1+i)=( )
A.1+i B.-1+i
C.+i D.-+i
(2)已知a,b∈R,i是虚数单位,若a-i与2+bi互为共轭复数,则(a+bi)2=( )
A.5-4i B.5+4i
C.3-4i D.3+4i
(3)把复数z的共轭复数记作,已知(1+2i) =4+3i,求z.
解:(1)选B.(1-i)(1+i)
=(1-i)(1+i)
=(1-i2)
=2=-1+i.
(2)选D.因为a-i与2+bi互为共轭复数,
所以a=2,b=1,所以(a+bi)2=(2+i)2=3+4i.
(3)设z=a+bi(a,b∈R),则=a-bi,
由已知得,(1+2i)(a-bi)=(a+2b)+(2a-b)i=4+3i,由复数相等的条件知,解得a=2,b=1,
所以z=2+i.
复数乘法运算法则的应用
复数的乘法可以按照多项式的乘法计算,只是在结果中要将i2换成-1,并将实部、虚部分别合并.多项式展开中的一些重要公式仍适用于复数,如(a+bi)2=a2+2abi+b2i2=a2-b2+2abi,(a+bi)3=a3+3a2bi+3ab2i2+b3i3=a3-3ab2+(3a2b-b3)i.
探究点2:
复数的除法运算
计算:
(1);
(2).
解:(1)=
===+i.
(2)==
====1-i.
复数除法运算法则的应用
复数的除法法则在实际操作中不方便使用,一般将除法写成分式形式,采用分母“实数化”的方法,即将分子、分母同乘分母的共轭复数,使分母成为实数,再计算.
探究点3:
i的运算性质
(1)复数z=,则ω=z2+z4+z6+z8+z10的值为( )
A.1 B.-1
C.i D.-i
(2)等于________.
解析:(1)z2==-1,所以ω=-1+1-1+1-1=-1.
(2)===i2 019=(i4)504·i3=1504·(-i)=-i.
答案:(1)B
(2)-i
(1)i的周期性要记熟,即in+in+1+in+2+in+3=0(n∈N*).
(2)记住以下结果,可提高运算速度.
①(1+i)2=2i,(1-i)2=-2i.
②=-i,=i.
③=-i.
探究点4:
在复数范围内解方程
在复数范围内解下列方程.
(1)x2+5=0;
(2)x2+4x+6=0.
解:(1)因为x2+5=0,所以x2=-5,
又因为(i)2=(-i)2=-5,
所以x=±i,
所以方程x2+5=0的根为±i.
(2)法一:因为x2+4x+6=0,
所以(x+2)2=-2,
因为(i)2=(-i)2=-2,
所以x+2=i或x+2=-i,
即x=-2+i或x=-2-i,
所以方程x2+4x+6=0的根为x=-2±i.
法二:由x2+4x+6=0知Δ=42-4×6=-8<0,
所以方程x2+4x+6=0无实数根.
在复数范围内,设方程x2+4x+6=0的根为x=a+bi(a,b∈R且b≠0),
则(a+bi)2+4(a+bi)+6=0,
所以a2+2abi-b2+4a+4bi+6=0,
整理得(a2-b2+4a+6)+(2ab+4b)i=0,
所以
又因为b≠0,
所以
解得a=-2,b=±.
所以x=-2±i,
即方程x2+4x+6=0的根为x=-2±i.
在复数范围内,实系数一元二次方程ax2+bx+c=0(a≠0)的求解方法
(1)求根公式法
①当Δ≥0时,x=.
②当Δ<0时,x=.
(2)利用复数相等的定义求解
设方程的根为x=m+ni(m,n∈R),将此代入方程ax2+bx+c=0(a≠0),化简后利用复数相等的定义求解.
三、课堂总结
1.复数乘法的运算法则和运算律
(1)复数乘法的运算法则
设z1=a+bi,z2=c+di(a,b,c,d∈R),
则z1·z2=(a+bi)(c+di)=(ac-bd)+(ad+bc)i.
(2)复数乘法的运算律
对任意复数z1,z2,z3∈C,有
交换律
z1z2=z2z1
结合律
(z1z2)z3=z1(z2z3)
乘法对加法的分配律
z1(z2+z3)=z1z2+z1z3
2.复数除法的运算法则
设z1=a+bi,z2=c+di(c+di≠0)(a,b,c,d∈R),
则==+i(c+di≠0).
■名师点拨
对复数除法的两点说明
(1)实数化:分子、分母同时乘以分母的共轭复数,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.
(2)代数式:注意最后结果要将实部、虚部分开.
四、课堂检测
1.若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b是实数),则b=( )
A.-2 B.-
C. D.2
解析:选D.因为(1+bi)(2+i)=2-b+(2b+1)i是纯虚数,所以b=2.
2.已知i为虚数单位,则复数的模等于( )
A. B.
C. D.
解析:选D.因为===-+i,
所以||=|-+i|==,故选D.
3.计算:(1)+;
(2)(4-i5)(6+2i7)+(7+i11)(4-3i).
解:(1)+
=+=i(1+i)+
=-1+i+(-i)1 009=-1+i-i=-1.
(2)原式=(4-i)(6-2i)+(7-i)(4-3i)
=22-14i+25-25i=47-39i.
复数的三角表示
【教学重难点】
【教学目标】
【核心素养】
复数的三角形式
了解复数的三角形式,了解复数的代数表示与三角表示之间的关系
数学抽象
复数三角形式乘、除运算的
三角表示及其几何意义
了解复数乘、除运算的三角表示及其几何意义
数学抽象、数学运算
【教学过程】
一、问题导入
预习教材内容,思考以下问题:
1.复数z=a+bi的三角形式是什么?
2.复数的辐角、辐角的主值是什么?
3.复数三角形式的乘、除运算公式是什么?
4.复数三角形式乘、除运算的几何意义是什么?
二、基础知识
1.复数的三角表示式及复数的辐角和辐角的主值
一般地,任何一个复数z=a+bi都可以表示成r(cosθ+isinθ)的形式,其中,r是复数z的模;θ是以x轴的非负半轴为始边,向量所在射线(射线)为终边的角,叫做复数z=a+bi的辐角,我们规定在0≤θ<2π范围内的辐角θ的值为辐角的主值,通常记作argz.r(cosθ+isinθ)叫做复数z=a+bi的三角表示式,简称三角形式.a+bi叫做复数的代数表示式,简称代数形式.
■名师点拨
(1)任何一个不为零的复数的辐角有无限多个值,且这些值相差2π的整数倍.
(2)复数0的辐角是任意的.
(3)在0≤θ<2π范围内的辐角θ的值为辐角的主值,通常记作argz,且0≤argz<2π.
(4)两个非零复数相等当且仅当它们的模与辐角的主值分别相等.
2.复数三角形式的乘、除运算
若复数z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),且z1≠z2,则
(1)z1z2=r1(cosθ1+isinθ1)·r2(cosθ2+isinθ2)
=r1r2[cos(θ1+θ2)+isin(θ1+θ2)].
(2)=
=[cos(θ1-θ2)+isin(θ1-θ2)].
即:两个复数相乘,积的模等于各复数的模的积,积的辐角等于各复数的辐角的和.
两个复数相除,商的模等于被除数的模除以除数的模所得的商,商的辐角等于被除数的辐角减去除数的辐角所得的差.
三、合作探究
1.复数的代数形式与三角形式的互化
角度一 代数形式化为三角形式
把下列复数的代数形式化成三角形式:
(1)+i;
(2)-i.
【解】(1)r==2,因为+i对应的点在第一象限,
所以cos θ=,即θ=,
所以+i=2.
(2)r==2,cos θ=,
又因为-i对应的点位于第四象限,
所以θ=.
所以-i=2.
复数的代数形式化三角形式的步骤
(1)先求复数的模.
(2)决定辐角所在的象限.
(3)根据象限求出辐角.
(4)求出复数的三角形式.
[提醒]一般在复数三角形式中的辐角,常取它的主值这既使表达式简便,又便于运算,但三角形式辐角不一定取主值.
角度二 三角形式化为代数形式
分别指出下列复数的模和辐角的主值,并把这些复数表示成代数形式.
(1)4;
(2)(cos 60°+isin 60°);
(3)2.
【解】(1)复数4的模r=4,辐角的主值为θ=.
4=4cos +4isin
=4×+4×i
=2+2i.
(2)(cos 60°+isin 60°)的模r=,辐角的主值为θ=60°.
(cos 60°+isin 60°)=×+×i
=+i.
(3)2
=2
=2.
所以复数的模r=2,辐角的主值为π.
2=2cos π+2isin π
=2×+2×i
=1-i.
复数的三角形式z=r(cosθ+isinθ)必须满足“模非负、余正弦、+相连、角统一、i跟sin”,否则就不是三角形式,只有化为三角形式才能确定其模和辐角,如本例(3).
2.复数三角形式的乘、除运算
计算:
(1)8×4;
(2)(cos 225°+isin 225°)÷[(cos 150°+isin 150°)];
(3)4÷.
【解】(1)8×4
=32
=32
=32
=32
=16+16i.
(2)(cos 225°+isin 225°)÷[(cos 150°+isin 150°)]
=[cos(225°-150°)+isin(225°-150°)]
=(cos 75°+isin 75°)
=
=+i
=+i.
(3)4÷
=4(cos 0+isin 0)÷
=4
=2-2i.
(1)乘法法则:模相乘,辐角相加.
(2)除法法则:模相除,辐角相减.
(3)复数的n次幂,等于模的n次幂,辐角的n倍.
3.复数三角形式乘、除运算的几何意义
在复平面内,把复数3-i对应的向量分别按逆时针和顺时针方向旋转,求所得向量对应的复数.
【解】因为3-i=2
=2
所以2×
=2
=2
=2
=3+i,
2×
=2
=2
=-2i.
故把复数3-i对应的向量按逆时针旋转得到的复数为3+i,按顺时针旋转得到的复数为-2i.
两个复数z1,z2相乘时,先分别画出与z1,z2对应的向量,,然后把向量绕点O按逆时针方向旋转角θ2(如果θ2<0,就要把绕点O按顺时针方向旋转角|θ2|),再把它的模变为原来的r2倍,得到向量,表示的复数就是积z1z2.
四、课堂检测
1.复数1-i的辐角的主值是( )
A.π B.π
C.π D.
解析:选A.因为1-i=2=2,所以1-i辐角的主值为π.
2.复数9(cos π+isin π)的模是________.
答案:9
3.arg(-2i)=________.
答案:π
4.计算:
(1)(cos 75°+isin 75°)(cos 15°+isin 15°);
(2)2(cos 300°+isin 300°)÷.
解:(1)(cos 75°+isin 75°)(cos 15°+isin 15°)
=cos(75°+15°)+isin(75°+15°)
=cos 90°+isin 90°
=i.
(2)2(cos 300°+isin 300°)÷
=2÷
=
=
=-+i.
点击下载
同课章节目录
第六章 平面向量及其应用
6.1 平面向量的概念
6.2 平面向量的运算
6.3 平面向量基本定理及坐标表示
6.4 平面向量的应用
第七章 复数
7.1 复数的概念
7.2 复数的四则运算
7.3 * 复数的三角表示
第八章 立体几何初步
8.1 基本立体图形
8.2 立体图形的直观图
8.3 简单几何体的表面积与体积
8.4 空间点、直线、平面之间的位置关系
8.5 空间直线、平面的平行
8.6 空间直线、平面的垂直
第九章 统计
9.1 随机抽样
9.2 用样本估计总体
9.3 统计分析案例 公司员工
第十章 概率
10.1 随机事件与概率
10.2 事件的相互独立性
10.3 频率与概率
点击下载
VIP下载