第七章 复数 学案 (3份)

文档属性

名称 第七章 复数 学案 (3份)
格式 zip
文件大小 101.9KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2020-02-08 20:04:49

文档简介

复数的概念
【第一学时】
数系的扩充和复数的概念
学习重难点
学习目标
核心素养
复数的有关概念
了解数系的扩充过程,理解复数的概念
数学抽象
复数的分类
理解复数的分类
数学抽象
复数相等
掌握复数相等的充要条件及其应用
数学运算
【学习过程】
一、问题导学
预习教材内容,思考以下问题:
1.复数是如何定义的?其表示方法又是什么?
2.复数分为哪两大类?
3.复数相等的条件是什么?
二、合作探究
探究点1:
复数的概念
/下列命题:
①若a∈R,则(a+1)i是纯虚数;
②若a,b∈R,且a>b,则a+i>b+i;
③若(x2-4)+(x2+3x+2)i是纯虚数,则实数x=±2;
④实数集是复数集的真子集.
其中正确的命题是( )
A.① B.②
C.③ D.④
解析:对于复数a+bi(a,b∈R),当a=0且b≠0时,为纯虚数.对于①,若a=-1,则(a+1)i不是纯虚数,即①错误;两个虚数不能比较大小,则②错误;对于③,若x=-2,则x2-4=0,x2+3x+2=0,此时(x2-4)+(x2+3x+2)i=0不是纯虚数,则③错误;显然,④正确.故选D.
答案:D
探究点2:
复数的分类
/当实数m为何值时,复数z=+(m2-2m)i:(1)为实数?(2)为虚数?(3)为纯虚数?
解:(1)当即m=2时,复数z是实数.
(2)当m2-2m≠0且m≠0,即m≠0且m≠2时,复数z是虚数.
(3)当即m=-3时,复数z是纯虚数.
探究点3:
复数相等
/(1)(2019·浙江杭州期末考试)若z1=-3-4i,z2=(n2-3m-1)+(n2-m-6)i(m,n∈R),且z1=z2,则m+n=( )
A.4或0 B.-4或0
C.2或0 D.-2或0
(2)若log2(x2-3x-2)+ilog2(x2+2x+1)>1,则实数x的值是________.
解析:(1)由z1=z2,得n2-3m-1=-3且n2-m-6=-4,解得m=2,n=±2,所以m+n=4或0,故选A.
(2)因为log2(x2-3x-2)+ilog2(x2+2x+1)>1,
所以即解得x=-2.
答案:(1)A
(2)-2
三、学习小结
1.复数的有关概念
(1)复数的定义
形如a+bi(a,b∈R)的数叫做复数,其中i叫做虚数单位,满足i2=-1.
(2)复数集
全体复数所构成的集合C={a+bi|a,b∈R}叫做复数集.
(3)复数的表示方法
复数通常用字母z表示,即z=a+bi(a,b∈R),其中a叫做复数z的实部,b叫做复数z的虚部.
2.复数相等的充要条件
在复数集C={a+bi|a,b∈R}中任取两个数a+bi,c+di(a,b,c,d∈R),我们规定:a+bi与c+di相等当且仅当a=c且b=d.
3.复数的分类
(1)复数z=a+bi(a,b∈R)
(2)复数集、实数集、虚数集、纯虚数集之间的关系
/
四、精炼反馈
1.若复数z=ai2-bi(a,b∈R)是纯虚数,则一定有( )
A.b=0 B.a=0且b≠0
C.a=0或b=0 D.ab≠0
解析:选B.z=ai2-bi=-a-bi,由纯虚数的定义可得a=0且b≠0.
2.若复数z=m2-1+(m2-m-2)i为实数,则实数m的值为( )
A.-1 B.2
C.1 D.-1或2
解析:选D.因为复数z=m2-1+(m2-m-2)i为实数,
所以m2-m-2=0,解得m=-1或m=2.
3.若复数z=(m+1)+(m2-9)i<0,则实数m的值等于____________.
解析:因为z<0,所以解得m=-3.
答案:-3
4.已知=(x2-2x-3)i(x∈R),则x=________.
解析:因为x∈R,所以∈R,
由复数相等的条件得
解得x=3.
答案:3
【第二学时】
复数的几何意义
学习重难点
学习目标
核心素养
复平面
了解复平面的概念
数学抽象
复数的几何意义
理解复数、复平面内的点、复平面内的向量之间的对应关系
直观想象
复数的模
掌握复数的模的概念,会求复数的模
数学运算
共轭复数
掌握共轭复数的概念,并会求一个复数的共轭复数
数学运算
【学习过程】
一、问题导学
预习教材内容,思考以下问题:
1.复平面是如何定义的?
2.复数与复平面内的点及向量的关系如何?复数的模是实数还是虚数?
3.复数z=a+bi的共轭复数是什么?
二、合作探究
探究点1:
复数与复平面内的点
/已知复数z=(a2-1)+(2a-1)i,其中a∈R.当复数z在复平面内对应的点Z满足下列条件时,求a的值(或取值范围).
(1)在实轴上;
(2)在第三象限.
解:(1)若z对应的点在实轴上,则有
2a-1=0,解得a=.
(2)若z对应的点在第三象限,则有
解得-1故a的取值范围是.
互动探究:
变条件:本例中复数z不变,若点Z在抛物线y2=4x上,求a的值.
解:若z对应的点(a2-1,2a-1)在抛物线y2=4x上,则有(2a-1)2=4(a2-1),即4a2-4a+1=4a2-4,解得a=.
探究点2:
复数与复平面内的向量
/在复平面内,复数i,1,4+2i对应的点分别是A,B,C.求平行四边形ABCD的顶点D所对应的复数.
解法一:由复数的几何意义得A(0,1),B(1,0),C(4,2),则AC的中点为,由平行四边形的性质知该点也是BD的中点,设D(x,y),则所以即点D的坐标为(3,3),所以点D对应的复数为3+3i.
解法二:由已知得=(0,1),=(1,0),=(4,2),
所以=(-1,1),=(3,2),
所以=+=(2,3),所以=+=(3,3),
即点D对应的复数为3+3i.
探究点3:
复数的模
/(1)设复数z1=a+2i,z2=-2+i且|z1|<|z2|,则实数a的取值范围是( )
A.-11
C.a>1 D.a>0
(2)(2019·贵州遵义贵龙中学期中测试)已知复数z满足|z|2-2|z|-3=0,则复数z在复平面内对应点的集合是( )
A.1个圆 B.线段
C.2个点 D.2个圆
解析:(1)由题意得<,即<(a∈R),所以-1(2)由题意知(|z|-3)(|z|+1)=0,
即|z|=3或|z|=-1,
因为|z|≥0,所以|z|=3,
所以复数z在复平面内对应点的集合是1个圆.
答案:(1)A
(2)A
三、学习小结
1.复平面
建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.
2.复数的两种几何意义
(1)复数z=a+bi(a,b∈R)复平面内的点Z(a,b).
(2)复数z=a+bi(a,b∈R) 平面向量.
3.复数的模
复数z=a+bi(a,b∈R)对应的向量为,则的模叫做复数z的模或绝对值,记作|z|或|a+bi|,即|z|=|a+bi|=.
4.共轭复数
(1)一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.
(2)虚部不等于0的两个共轭复数也叫做共轭虚数.
(3)复数z的共轭复数用表示,即如果z=a+bi,那么=a-bi.
四、精炼反馈
1.已知z=(m+3)+(m-1)i(m∈R)在复平面内对应的点在第四象限,则实数m的取值范围是( )
A.(-3,1) B.(-1,3)
C.(1,+∞) D.(-∞,-3)
解析:选A.由题意得解得-32.在复平面内,O为原点,向量对应的复数为-1-2i,若点A关于实轴的对称点为B,则向量对应的复数为( )
A.-2-i B.2+i
C.1+2i D.-1+2i
解析:选D.由题意可知,点A的坐标为(-1,-2),则点B的坐标为(-1,2),故向量对应的复数为-1+2i.
3.已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是____________.
解析:依题意,可知z=a+i(a∈R),则|z|2=a2+1.因为0<a<2,所以a2+1∈(1,5),即|z|∈(1,).
答案:(1,)
4.若复数z1=2+bi与复数z2=a-4i互为共轭复数,则a=________,b=________.
解析:因为z1与z2互为共轭复数,
所以a=2,b=4.
答案:2 4
复数的四则运算
【第一课时】
复数的加、减运算及其几何意义
学习重难点
学习目标
核心素养
复数加法、减法的运算
掌握复数代数形式的加法、减法运算法则
数学运算
复数加法的几何意义
理解复数代数形式的加法、减法运算的几何意义
直观想象
【学习过程】
一、问题导学
预习教材内容,思考以下问题:
1.复数的加、减法运算法则是什么?运算律有哪些?
2.复数的加、减法的几何意义是什么?
二、合作探究
探究点1:
复数的加、减法运算
例1:(1)计算:(5-6i)+(-2-i)-(3+4i);
(2)设z1=x+2i,z2=3-yi(x,y∈R),且z1+z2=5-6i,求z1-z2.
解:(1)原式=(5-2-3)+(-6-1-4)i=-11i.
(2)因为z1=x+2i,z2=3-yi,z1+z2=5-6i,
所以(3+x)+(2-y)i=5-6i,
所以所以所以z1-z2=(2+2i)-(3-8i)=(2-3)+[2-(-8)]i=-1+10i.
探究点2:
复数加、减法的几何意义
例2:已知平行四边形OABC的三个顶点O,A,C对应的复数分别为0,3+2i,-2+4i.
(1)求表示的复数;
(2)求表示的复数.
/
解:(1)因为=-,
所以表示的复数为-(3+2i),即-3-2i.
(2)因为=-,
所以表示的复数为(3+2i)-(-2+4i)=5-2i.
互动探究:
1.变问法:若本例条件不变,试求点B所对应的复数.
解:因为=+,所以表示的复数为(3+2i)+(-2+4i)=1+6i.所以点B所对应的复数为1+6i.
2.变问法:若本例条件不变,求对角线AC,BO的交点M对应的复数.
解:由题意知,点M为OB的中点,
则=,由互动探究1中知点B的坐标为(1,6),得点M的坐标为,所以点M对应的复数为+3i.
三、学习小结
1.复数加、减法的运算法则及加法运算律
(1)加、减法的运算法则
设z1=a+bi,z2=c+di(a,b,c,d∈R)是任意两个复数,则z1+z2=(a+c)+(b+d)i,z1-z2=(a-c)+(b-d)i.
(2)加法运算律
对任意z1,z2,z3∈C,有
①交换律:z1+z2=z2+z1.
②结合律:(z1+z2)+z3=z1+(z2+z3).
2.复数加、减法的几何意义
如图所示,设复数z1=a+bi,z2=c+di(a,b,c,d∈R)对应的向量分别为,,四边形OZ1ZZ2为平行四边形,则与z1+z2对应的向量是,与z1-z2对应的向量是.
/
四、精炼反馈
1.(6-3i)-(3i+1)+(2-2i)的结果为(  )
A.5-3i B.3+5i
C.7-8i D.7-2i
解析:选C.(6-3i)-(3i+1)+(2-2i)=(6-1+2)+(-3-3-2)i=7-8i.
2.已知复数z1=(a2-2)-3ai,z2=a+(a2+2)i,若z1+z2是纯虚数,则实数a的值为____________.
解析:由z1+z2=a2-2+a+(a2-3a+2)i是纯虚数,得?a=-2.
答案:-2
3.已知复数z1=-2+i,z2=-1+2i.
(1)求z1-z2;
(2)在复平面内作出复数z1-z2所对应的向量.
解:(1)由复数减法的运算法则得z1-z2=(-2+i)-(-1+2i)=-1-i.
(2)在复平面内作复数z1-z2所对应的向量,如图中.
/
【第二课时】
复数的乘、除运算
学习重难点
学习目标
核心素养
复数的乘除运算
掌握复数乘除运算的运算法则,能够进行复数的乘除运算
数学运算
复数乘法的运算律
理解复数乘法的运算律
逻辑推理
解方程
会在复数范围内解方程
数学运算
【学习过程】
一、问题导学
预习教材内容,思考以下问题:
1.复数的乘法和除法运算法则各是什么?
2.复数乘法的运算律有哪些?
3.如何在复数范围内求方程的解?
二、合作探究
探究点1:
复数的乘法运算
例1:(1)(1-i)(1+i)=(  )
A.1+i B.-1+i
C.+i D.-+i
(2)已知a,b∈R,i是虚数单位,若a-i与2+bi互为共轭复数,则(a+bi)2=(  )
A.5-4i B.5+4i
C.3-4i D.3+4i
(3)把复数z的共轭复数记作,已知(1+2i) =4+3i,求z.
解:(1)选B.(1-i)(1+i)
=(1-i)(1+i)
=(1-i2)
=2=-1+i.
(2)选D.因为a-i与2+bi互为共轭复数,
所以a=2,b=1,所以(a+bi)2=(2+i)2=3+4i.
(3)设z=a+bi(a,b∈R),则=a-bi,
由已知得,(1+2i)(a-bi)=(a+2b)+(2a-b)i=4+3i,由复数相等的条件知,解得a=2,b=1,
所以z=2+i.
探究点2:
复数的除法运算
例2:计算:
(1);
(2).
解:(1)=
===+i.
(2)==
====1-i.
探究点3:
i的运算性质
例3:(1)复数z=,则ω=z2+z4+z6+z8+z10的值为(  )
A.1 B.-1
C.i D.-i
(2)等于________.
解析:(1)z2==-1,所以ω=-1+1-1+1-1=-1.
(2)===i2 019=(i4)504·i3=1504·(-i)=-i.
答案:(1)B
(2)-i
探究点4:
在复数范围内解方程
例4:在复数范围内解下列方程.
(1)x2+5=0;
(2)x2+4x+6=0.
解:(1)因为x2+5=0,所以x2=-5,
又因为(i)2=(-i)2=-5,
所以x=±i,
所以方程x2+5=0的根为±i.
(2)法一:因为x2+4x+6=0,
所以(x+2)2=-2,
因为(i)2=(-i)2=-2,
所以x+2=i或x+2=-i,
即x=-2+i或x=-2-i,
所以方程x2+4x+6=0的根为x=-2±i.
法二:由x2+4x+6=0知Δ=42-4×6=-8<0,
所以方程x2+4x+6=0无实数根.
在复数范围内,设方程x2+4x+6=0的根为x=a+bi(a,b∈R且b≠0),
则(a+bi)2+4(a+bi)+6=0,
所以a2+2abi-b2+4a+4bi+6=0,
整理得(a2-b2+4a+6)+(2ab+4b)i=0,
所以
又因为b≠0,
所以
解得a=-2,b=±.
所以x=-2±i,
即方程x2+4x+6=0的根为x=-2±i.
三、学习小结
1.复数乘法的运算法则和运算律
(1)复数乘法的运算法则
设z1=a+bi,z2=c+di(a,b,c,d∈R),
则z1·z2=(a+bi)(c+di)=(ac-bd)+(ad+bc)i.
(2)复数乘法的运算律
对任意复数z1,z2,z3∈C,有
交换律
z1z2=z2z1
结合律
(z1z2)z3=z1(z2z3)
乘法对加法的分配律
z1(z2+z3)=z1z2+z1z3
2.复数除法的运算法则
设z1=a+bi,z2=c+di(c+di≠0)(a,b,c,d∈R),
则==+i(c+di≠0).
四、精炼反馈
1.若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b是实数),则b=(  )
A.-2 B.-
C. D.2
解析:选D.因为(1+bi)(2+i)=2-b+(2b+1)i是纯虚数,所以b=2.
2.已知i为虚数单位,则复数的模等于(  )
A. B.
C. D.
解析:选D.因为===-+i,
所以||=|-+i|==,故选D.
3.计算:(1)+;
(2)(4-i5)(6+2i7)+(7+i11)(4-3i).
解:(1)+
=+=i(1+i)+
=-1+i+(-i)1 009=-1+i-i=-1.
(2)原式=(4-i)(6-2i)+(7-i)(4-3i)
=22-14i+25-25i=47-39i.