【2020赢在中考】数学二轮专题解读与强化训练
专题02 新定义与阅读理解问题
新定义学习型阅读理解题,是指题目中首先给出一个新定义(新概念或新公式),通过阅读题目提供的材料,理解新定义,再通过对新定义的理解来解决题目提出的问题。其主要目的是通过对新定义的理解与运用来考查学生的自学能力,便于学生养成良好的学习习惯。在全国各地的中考试卷中经常以选择、填空或解题过程题的形式出现。 常见的类型有:
(1)根据新定义直接计算问题:加、减、乘、除是我们所熟悉的四则运算,定义新运算就是打破原有的运算规则,给出一种新的运算方法,并赋予该运算方法新的运算符号,如*、△、◎、※等。此时,只需要将所要求的是式子或者数往该运算规则中代,即可求出答案。
(2)解未知数问题:未知数在方程比较常见。新定义与阅读理解问题中的解未知数,主要是根据未知数所在方程的特点,结合图像特点,思路点拨其中的练习和区别,探索其中的规律。【来源:21·世纪·教育·网】
(3)其他类型综合题:主要考察学生对新定义的理解能力,培养学生的思考能力,从所给的题目中,找到解题规律。21*cnjy*com
解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”; 归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。
注意:
(1)无特殊规定时,按从左到右的顺序计算;有括号时,应当先算括号里面的。
(2)新定义的运算往往不一定具备交换律和结合律,不能随便套用这些运算律来解题。
(3)如※,△,●,★等符号所表示的运算并不是一种固定的算法,而是因题而异,不同的题目有不同的规定,我们应当严格按不同的规定进行运算。2·1·c·n·j·y
考向一 根据新定义直接计算例1.(2019年广西柳州市)定义:形如a+bi的数称为复数(其中a和b为实数,i为虚数单位,规定i2=﹣1),a称为复数的实部,b称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如(1+3i)2=12+2×1×3i+(3i)2=1+6i+9i2=1+6i﹣9=﹣8+6i,因此,(1+3i)2的实部是﹣8,虚部是6.已知复数(3﹣mi)2的虚部是12,则实部是( )
A.﹣6 B.6 C.5 D.﹣5
【思路点拨】先利用完全平方公式得出(3﹣mi)2=9﹣6mi+m2i2,再根据新定义得出复数(3﹣mi)2的实部是9﹣m2,虚部是﹣6m,由(3﹣mi)2的虚部是12得出m=﹣2,代入9﹣m2计算即可.
【解题过程】∵(3﹣mi)2=32﹣2×3×mi+(mi)2=9﹣6mi+m2i2=9+m2i2﹣6mi=9﹣m2﹣6mi,
∴复数(3﹣mi)2的实部是9﹣m2,虚部是﹣6m,
∴﹣6m=12,
∴m=﹣2,
∴9﹣m2=9﹣(﹣2)2=9﹣4=5.
故选:C.
【名师点睛】本题考查了新定义,完全平方公式,理解新定义是解题的关键.
考向二 解未知数
例2.(2019年山东省枣庄市)对于实数a、b,定义关于“?”的一种运算:a?b=2a+b,例如3?4=2×3+4=10.
(1)求4?(﹣3)的值,
(2)若x?(﹣y)=2,(2y)?x=﹣1,求x+y的值.
【思路点拨】(1)原式利用题中的新定义计算即可求出值,
(2)已知等式利用题中的新定义化简,计算即可求出所求.
【解题过程】(1)根据题中的新定义得:原式=8﹣3=5,
(2)根据题中的新定义化简得:,
①+②得:3x+3y=1,
则x+y=.
【名师点睛】此题考查了解二元一次方程组,以及实数的运算,熟练掌握运算法则是解本题的关键.
考向三 其它类型综合
例3.(2019年湖北省咸宁市)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.
理解:
(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.
求证:四边形ABCD是等补四边形,
探究:
(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.
运用:
(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.
【思路点拨】(1)由圆内接四边形互补可知∠A+∠C=180°,∠ABC+∠ADC=180°,再证AD=CD,即可根据等补四边形的定义得出结论,
(2)过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,证△ABE≌△ADF,得到AE=AF,根据角平分线的判定可得出结论,
(3)连接AC,先证∠EAD=∠BCD,推出∠FCA=∠FAD,再证△ACF∽△DAF,利用相似三角形对应边的比相等可求出DF的长.
【解题过程】(1)证明:∵四边形ABCD为圆内接四边形,
∴∠A+∠C=180°,∠ABC+∠ADC=180°,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴,
∴AD=CD,
∴四边形ABCD是等补四边形,
(2)AD平分∠BCD,理由如下:
如图2,过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,
则∠AEB=∠AFD=90°,
∵四边形ABCD是等补四边形,
∴∠B+∠ADC=180°,
又∠ADC+∠ADF=180°,
∴∠B=∠ADF,
∵AB=AD,
∴△ABE≌△ADF(AAS),
∴AE=AF,
∴AC是∠BCF的平分线,即AC平分∠BCD,
(3)如图3,连接AC,
∵四边形ABCD是等补四边形,
∴∠BAD+∠BCD=180°,
又∠BAD+∠EAD=180°,
∴∠EAD=∠BCD,
∵AF平分∠EAD,
∴∠FAD=∠EAD,
由(2)知,AC平分∠BCD,
∴∠FCA=∠BCD,
∴∠FCA=∠FAD,
又∠AFC=∠DFA,
∴△ACF∽△DAF,
∴,
即,
∴DF=5﹣5.
【名师点睛】本题考查了新定义等补四边形,圆的有关性质,全等三角形的判定与性质,角平分线的判定,相似三角形的判定与性质等,解题关键是要能够通过自主学习来进行探究,运用等.
选择题
(2019年广西玉林市)定义新运算:p⊕q=,例如:3⊕5=,3⊕(﹣5)=﹣,则y=2⊕x(x≠0)的图象是( )
A. B. C. D.
(2019年广东省深圳市)定义一种新运算:,例如:,若,则( )
A.-2 B. C.2 D.
填空题
(2019年甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市、陇南市、庆阳市)定义:等腰三角形的顶角与其一个底角的度数的比值称为这个等腰三角形的“特征值”.若等腰中,,则它的特征值__________.
(2019年湖北省襄阳市)定义:a*b=,则方程2*(x+3)=1*(2x)的解为 .
(2019年湖北省十堰市)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m= .
(2019年四川省遂宁市)阅读材料:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.
例如计算:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i,
(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i,
(4+i)(4﹣i)=16﹣i2=16﹣(﹣1)=17,
(2+i)2=4+4i+i2=4+4i﹣1=3+4i
根据以上信息,完成下面计算:
(1+2i)(2﹣i)+(2﹣i)2= .
(2019年广西贵港市)我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,且b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3),②图象具有对称性,对称轴是直线x=1,③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,④当x=﹣1或x=3时,函数的最小值是0,⑤当x=1时,函数的最大值是4.其中正确结论的个数是 .
解答题
(2019年重庆市(a卷))《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”.
定义,对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,
例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位,
23不是“纯数”,因为计算23+24+25时,个位产生了进位.
(1)判断2019和2020是否是“纯数”?请说明理由,
(2)求出不大于100的“纯数”的个数.
(2019年浙江省衢州市)定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=那么称点T是点A,B的融合点.
例如:A(﹣1,8),B(4,﹣2),当点T(x,y)满足x==1,y==2时,则点T(1,2)是点A,B的融合点.
(1)已知点A(﹣1,5),B(7,7),C(2,4),请说明其中一个点是另外两个点的融合点.
(2)如图,点D(3,0),点E(t,2t+3)是直线l上任意一点,点T(x,y)是点D,E的融合点.
①试确定y与x的关系式.
②若直线ET交x轴于点H.当△DTH为直角三角形时,求点E的坐标.
(2019年湖南省长沙市)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.
(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).
①四条边成比例的两个凸四边形相似,( 命题)
②三个角分别相等的两个凸四边形相似,( 命题)
③两个大小不同的正方形相似.( 命题)
(2)如图1,在四边形ABCD和四边形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,==.求证:四边形ABCD与四边形A1B1C1D1相似.
(3)如图2,四边形ABCD中,AB∥CD,AC与BD相交于点O,过点O作EF∥AB分别交AD,BC于点E,F.记四边形ABFE的面积为S1,四边形EFCD的面积为S2,若四边形ABFE与四边形EFCD相似,求的值.
(2019年湖南省张家界市)阅读下面的材料:
按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,依此类推,排在第n位的数称为第n项,记为an.所以,数列的一般形式可以写成:a1,a2,a3,…,an,….
一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示.如:数列1,3,5,7,…为等差数列,其中a1=1,a2=3,公差为d=2.
根据以上材料,解答下列问题:
(1)等差数列5,10,15,…的公差d为 ,第5项是 .
(2)如果一个数列a1,a2,a3,…,an…,是等差数列,且公差为d,那么根据定义可得到:a2﹣a1=d,a3﹣a2=d,a4﹣a3=d,…,an﹣an﹣1=d,….
所以
a2=a1+d
a3=a2+d=(a1+d)+d=a1+2d,
a4=a3+d=(a1+2d)+d=a1+3d,
……
由此,请你填空完成等差数列的通项公式:an=a1+( )d.
(3)﹣4041是不是等差数列﹣5,﹣7,﹣9…的项?如果是,是第几项?
(2019年江苏省扬州)如图,平面内的两条直线l1、l2,点A、B在直线l2上,过点A、B两点分别作直线l1的垂线,垂足分别为A1、B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T(AB,l2),特别地,线段AC在直线l2上的正投影就是线段A1C,请依据上述定义解决如下问题.
(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)= ;
(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积;
(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD).
(2019年湖南省株洲市)已知二次函数y=ax2+bx+c(a>0)
(1)若a=1,b=﹣2,c=﹣1
①求该二次函数图象的顶点坐标,
②定义:对于二次函数y=px2+qx+r(p≠0),满足方程y=x的x的值叫做该二次函数的“不动点”.求证:二次函数y=ax2+bx+c有两个不同的“不动点”.
(2)设b=c3,如图所示,在平面直角坐标系Oxy中,二次函数y=ax2+bx+c的图象与x轴分别相交于不同的两点A(x1,0),B(x2,0),其中x1<0,x2>0,与y轴相交于点C,连结BC,点D在y轴的正半轴上,且OC=OD,又点E的坐标为(1,0),过点D作垂直于y轴的直线与直线CE相交于点F,满足∠AFC=∠ABC.FA的延长线与BC的延长线相交于点P,若=,求二次函数的表达式.
(2019年浙江省宁波市)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.
(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.
求证:四边形ABEF是邻余四边形.
(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.
(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.
(2019年江苏省南京 )(概念认知):
城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(,)和B(,),用以下方式定义两点间距离:d(A,B)=+.
(数学理解):
(1)①已知点A(﹣2,1),则d(O,A)= ;②函数(0≤x≤2)的图像如图①所示,B是图像上一点,d(O,B)=3,则点B的坐标是 .
(2)函数(x>0)的图像如图②所示,求证:该函数的图像上不存在点C,使d(O,C)=3.
(3)函数(x≥0)的图像如图③所示,D是图像上一点,求d(O,D)的最小值及对应的点D的坐标.
(问题解决):
(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)
【2020赢在中考】数学二轮专题解读与强化训练
专题02 新定义与阅读理解问题
新定义学习型阅读理解题,是指题目中首先给出一个新定义(新概念或新公式),通过阅读题目提供的材料,理解新定义,再通过对新定义的理解来解决题目提出的问题。其主要目的是通过对新定义的理解与运用来考查学生的自学能力,便于学生养成良好的学习习惯。在全国各地的中考试卷中经常以选择、填空或解题过程题的形式出现。 常见的类型有:
(1)根据新定义直接计算问题:加、减、乘、除是我们所熟悉的四则运算,定义新运算就是打破原有的运算规则,给出一种新的运算方法,并赋予该运算方法新的运算符号,如*、△、◎、※等。此时,只需要将所要求的是式子或者数往该运算规则中代,即可求出答案。
(2)解未知数问题:未知数在方程比较常见。新定义与阅读理解问题中的解未知数,主要是根据未知数所在方程的特点,结合图像特点,思路点拨其中的练习和区别,探索其中的规律。【来源:21·世纪·教育·网】
(3)其他类型综合题:主要考察学生对新定义的理解能力,培养学生的思考能力,从所给的题目中,找到解题规律。21*cnjy*com
解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”; 归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。
注意:
(1)无特殊规定时,按从左到右的顺序计算;有括号时,应当先算括号里面的。
(2)新定义的运算往往不一定具备交换律和结合律,不能随便套用这些运算律来解题。
(3)如※,△,●,★等符号所表示的运算并不是一种固定的算法,而是因题而异,不同的题目有不同的规定,我们应当严格按不同的规定进行运算。2·1·c·n·j·y
考向一 根据新定义直接计算例1.(2019年广西柳州市)定义:形如a+bi的数称为复数(其中a和b为实数,i为虚数单位,规定i2=﹣1),a称为复数的实部,b称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如(1+3i)2=12+2×1×3i+(3i)2=1+6i+9i2=1+6i﹣9=﹣8+6i,因此,(1+3i)2的实部是﹣8,虚部是6.已知复数(3﹣mi)2的虚部是12,则实部是( )
A.﹣6 B.6 C.5 D.﹣5
【思路点拨】先利用完全平方公式得出(3﹣mi)2=9﹣6mi+m2i2,再根据新定义得出复数(3﹣mi)2的实部是9﹣m2,虚部是﹣6m,由(3﹣mi)2的虚部是12得出m=﹣2,代入9﹣m2计算即可.
【解题过程】∵(3﹣mi)2=32﹣2×3×mi+(mi)2=9﹣6mi+m2i2=9+m2i2﹣6mi=9﹣m2﹣6mi,
∴复数(3﹣mi)2的实部是9﹣m2,虚部是﹣6m,
∴﹣6m=12,
∴m=﹣2,
∴9﹣m2=9﹣(﹣2)2=9﹣4=5.
故选:C.
【名师点睛】本题考查了新定义,完全平方公式,理解新定义是解题的关键.
考向二 解未知数
例2.(2019年山东省枣庄市)对于实数a、b,定义关于“?”的一种运算:a?b=2a+b,例如3?4=2×3+4=10.
(1)求4?(﹣3)的值,
(2)若x?(﹣y)=2,(2y)?x=﹣1,求x+y的值.
【思路点拨】(1)原式利用题中的新定义计算即可求出值,
(2)已知等式利用题中的新定义化简,计算即可求出所求.
【解题过程】(1)根据题中的新定义得:原式=8﹣3=5,
(2)根据题中的新定义化简得:,
①+②得:3x+3y=1,
则x+y=.
【名师点睛】此题考查了解二元一次方程组,以及实数的运算,熟练掌握运算法则是解本题的关键.
考向三 其它类型综合
例3.(2019年湖北省咸宁市)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.
理解:
(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.
求证:四边形ABCD是等补四边形,
探究:
(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.
运用:
(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.
【思路点拨】(1)由圆内接四边形互补可知∠A+∠C=180°,∠ABC+∠ADC=180°,再证AD=CD,即可根据等补四边形的定义得出结论,
(2)过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,证△ABE≌△ADF,得到AE=AF,根据角平分线的判定可得出结论,
(3)连接AC,先证∠EAD=∠BCD,推出∠FCA=∠FAD,再证△ACF∽△DAF,利用相似三角形对应边的比相等可求出DF的长.
【解题过程】(1)证明:∵四边形ABCD为圆内接四边形,
∴∠A+∠C=180°,∠ABC+∠ADC=180°,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴,
∴AD=CD,
∴四边形ABCD是等补四边形,
(2)AD平分∠BCD,理由如下:
如图2,过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,
则∠AEB=∠AFD=90°,
∵四边形ABCD是等补四边形,
∴∠B+∠ADC=180°,
又∠ADC+∠ADF=180°,
∴∠B=∠ADF,
∵AB=AD,
∴△ABE≌△ADF(AAS),
∴AE=AF,
∴AC是∠BCF的平分线,即AC平分∠BCD,
(3)如图3,连接AC,
∵四边形ABCD是等补四边形,
∴∠BAD+∠BCD=180°,
又∠BAD+∠EAD=180°,
∴∠EAD=∠BCD,
∵AF平分∠EAD,
∴∠FAD=∠EAD,
由(2)知,AC平分∠BCD,
∴∠FCA=∠BCD,
∴∠FCA=∠FAD,
又∠AFC=∠DFA,
∴△ACF∽△DAF,
∴,
即,
∴DF=5﹣5.
【名师点睛】本题考查了新定义等补四边形,圆的有关性质,全等三角形的判定与性质,角平分线的判定,相似三角形的判定与性质等,解题关键是要能够通过自主学习来进行探究,运用等.
选择题
(2019年广西玉林市)定义新运算:p⊕q=,例如:3⊕5=,3⊕(﹣5)=﹣,则y=2⊕x(x≠0)的图象是( )
A. B. C. D.
【考点】函数的图象
【分析】根据题目中的新定义,可以写出y=2⊕x函数解析式,从而可以得到相应的函数图象,本题得以解决.
解:∵p⊕q=,
∴y=2⊕x=,
故选:D.
【点评】本题考查函数的图象,解答本题的关键是明确题意,利用反比例函数的性质解答.
(2019年广东省深圳市)定义一种新运算:,例如:,若,则( )
A.-2 B. C.2 D.
【考点】解分式方程
【分析】根据新定义运算得到一个分式方程,求解即可.
解:根据题意得,
,
则,
经检验,是方程的解,
故选B.
【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.
、填空题
(2019年甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市、陇南市、庆阳市)定义:等腰三角形的顶角与其一个底角的度数的比值称为这个等腰三角形的“特征值”.若等腰中,,则它的特征值__________.
【考点】等腰三角形的性质
【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解
解:①当为顶角时,等腰三角形两底角的度数为:
∴特征值
②当为底角时,顶角的度数为:
∴特征值
综上所述,特征值为或
故答案为或
【点睛】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知的底数,要进行判断是底角或顶角,以免造成答案的遗漏.
(2019年湖北省襄阳市)定义:a*b=,则方程2*(x+3)=1*(2x)的解为 .
【考点】有理数的混合运算,解分式方程
【分析】根据新定义列分式方程可得结论.
解:2*(x+3)=1*(2x),
=,
4x=x+3,
x=1,
经检验:x=1是原方程的解,
故答案为:x=1.
【点评】本题考查了解分式方程和新定义的理解,熟练掌握解分式方程的步骤是关键.
(2019年湖北省十堰市)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m= .
【考点】实数的运算,解一元二次方程﹣因式分解法
【分析】利用新定义得到[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,整理得到(2m﹣1)2﹣49=0,然后利用因式分解法解方程.
解:根据题意得[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,
(2m﹣1)2﹣49=0,
(2m﹣1+7)(2m﹣1﹣7)=0,
2m﹣1+7=0或2m﹣1﹣7=0,
所以m1=﹣3,m2=4.
故答案为﹣3或4.
【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.
(2019年四川省遂宁市)阅读材料:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.
例如计算:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i,
(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i,
(4+i)(4﹣i)=16﹣i2=16﹣(﹣1)=17,
(2+i)2=4+4i+i2=4+4i﹣1=3+4i
根据以上信息,完成下面计算:
(1+2i)(2﹣i)+(2﹣i)2= .
【考点】实数的运算,完全平方公式,多项式乘多项式
【分析】直接利用完全平方公式以及多项式乘法分别化简得出答案.
解:(1+2i)(2﹣i)+(2﹣i)2=2﹣i+4i﹣2i2+4+i2﹣4i
=6﹣i﹣i2
=6﹣i+1
=7﹣i.
故答案为:7﹣i.
【点评】此题主要考查了实数运算,正确运用相关计算法则是解题关键.
(2019年广西贵港市)我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,且b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3),②图象具有对称性,对称轴是直线x=1,③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,④当x=﹣1或x=3时,函数的最小值是0,⑤当x=1时,函数的最大值是4.其中正确结论的个数是 .
【考点】二次函数的性质,二次函数图象与几何变换,二次函数的最值,抛物线与x轴的交点
【分析】由(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|,∴①是正确的,从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线x=1,②也是正确的,
根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的,函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1或x=3,因此④也是正确的,从图象上看,当x<﹣1或x>3,函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此⑤时不正确的,逐个判断之后,可得出答案.
解:①∵(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|,∴①是正确的,
②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线x=1,因此②也是正确的,
③根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的,
④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1或x=3,因此④也是正确的,
⑤从图象上看,当x<﹣1或x>3,函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此⑤时不正确的,
故答案是:4
【点评】理解“鹊桥”函数y=|ax2+bx+c|的意义,掌握“鹊桥”函数与y=|ax2+bx+c|与二次函数y=ax2+bx+c之间的关系,两个函数性质之间的联系和区别是解决问题的关键,二次函数y=ax2+bx+c与x轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.
解答题
(2019年重庆市(a卷))《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”.
定义,对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,
例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位,
23不是“纯数”,因为计算23+24+25时,个位产生了进位.
(1)判断2019和2020是否是“纯数”?请说明理由,
(2)求出不大于100的“纯数”的个数.
【考点】有理数的加法,规律型:数字的变化类,整式的加减
【分析】(1)根据题目中的新定义可以解答本题,注意各数位都不产生进位的自然数才是“纯数”,
(2)根据题意可以推出不大于100的“纯数”的个数,本题得以解决.
解:(1)2019不是“纯数”,2020是“纯数”,
理由:当n=2019时,n+1=2020,n+2=2021,
∵个位是9+0+1=10,需要进位,
∴2019不是“纯数”,
当n=2020时,n+1=2021,n+2=2022,
∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不需要进位,千位为2+2+2=6,不需要进位,
∴2020是“纯数”,
(2)由题意可得,
连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,
当这个数是一位自然数时,只能是0,1,2,共三个,
当这个自然数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,共九个,
当这个数是三位自然数是,只能是100,
由上可得,不大于100的“纯数”的个数为3+9+1=13,
即不大于100的“纯数”的有13个.
【点评】本题考查整式的加减、有理数的加法、新定义,解答本题的关键是明确题意,利用题目中的新定义解答.
(2019年浙江省衢州市)定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=那么称点T是点A,B的融合点.
例如:A(﹣1,8),B(4,﹣2),当点T(x,y)满足x==1,y==2时,则点T(1,2)是点A,B的融合点.
(1)已知点A(﹣1,5),B(7,7),C(2,4),请说明其中一个点是另外两个点的融合点.
(2)如图,点D(3,0),点E(t,2t+3)是直线l上任意一点,点T(x,y)是点D,E的融合点.
①试确定y与x的关系式.
②若直线ET交x轴于点H.当△DTH为直角三角形时,求点E的坐标.
【考点】一次函数综合题.
【分析】(1)x=(﹣1+7)=2,y=(5+7)=4,即可求解;
(2)①由题意得:x=(t+3),y=(2t+3),即可求解;②分∠DTH=90°、∠TDH=90°、∠HTD=90°三种情况,分别求解即可.
解:(1)x=(﹣1+7)=2,y=(5+7)=4,
故点C是点A、B的融合点;
(2)①由题意得:x=(t+3),y=(2t+3),
则t=3x﹣3,
则y=(6x﹣6+3)=2x﹣1;
②当∠DHT=90°时,如图1所示,
设T(m,2m﹣1),则点E(m,2m+3),
由点T是点D,E的融合点得:m=,
解得:m=,即点E(,6);
当∠TDH=90°时,如图2所示,
则点T(3,5),
由点T是点D,E的融合点得:点E(6,15);
当∠HTD=90°时,该情况不存在;
故点E(,6)或(6,15).
【点评】本题是一次函数综合运用题,涉及到勾股定理得运用,此类新定义题目,通常按照题设顺序,逐次求解.
(2019年湖南省长沙市)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.
(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).
①四条边成比例的两个凸四边形相似,( 命题)
②三个角分别相等的两个凸四边形相似,( 命题)
③两个大小不同的正方形相似.( 命题)
(2)如图1,在四边形ABCD和四边形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,==.求证:四边形ABCD与四边形A1B1C1D1相似.
(3)如图2,四边形ABCD中,AB∥CD,AC与BD相交于点O,过点O作EF∥AB分别交AD,BC于点E,F.记四边形ABFE的面积为S1,四边形EFCD的面积为S2,若四边形ABFE与四边形EFCD相似,求的值.
【考点】相似形综合题
【分析】(1)根据相似多边形的定义即可判断.
(2)根据相似多边形的定义证明四边成比例,四个角相等即可.
(3)四边形ABFE与四边形EFCD相似,证明相似比是1即可解决问题,即证明DE=AE即可.
(1)解:①四条边成比例的两个凸四边形相似,是假命题,角不一定相等.
②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例.
③两个大小不同的正方形相似.是真命题.
故答案为假,假,真.
(2)证明:如图1中,连接BD,B1D1.
∵∠BCD=∠B1C1D1,且=,
∴△BCD∽△B1C1D1,
∴∠CDB=∠C1D1B1,∠C1B1D1=∠CBD,
∵==,
∴=,
∵∠ABC=∠A1B1C1,
∴∠ABD=∠A1B1D1,
∴△ABD∽△A1B1D1,
∴=,∠A=∠A1,∠ADB=∠A1D1B1,
∴,===,∠ADC=∠A1D1C1,∠A=∠A1,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,
∴四边形ABCD与四边形A1B1C1D1相似.
(3)如图2中,
∵四边形ABCD与四边形EFCD相似.
∴=,
∵EF=OE+OF,
∴=,
∵EF∥AB∥CD,
∴=,==,
∴+=+,
∴=,
∵AD=DE+AE,
∴=,
∴2AE=DE+AE,
∴AE=DE,
∴=1.
【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,相似多边形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题.
(2019年湖南省张家界市)阅读下面的材料:
按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,依此类推,排在第n位的数称为第n项,记为an.所以,数列的一般形式可以写成:a1,a2,a3,…,an,….
一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示.如:数列1,3,5,7,…为等差数列,其中a1=1,a2=3,公差为d=2.
根据以上材料,解答下列问题:
(1)等差数列5,10,15,…的公差d为 ,第5项是 .
(2)如果一个数列a1,a2,a3,…,an…,是等差数列,且公差为d,那么根据定义可得到:a2﹣a1=d,a3﹣a2=d,a4﹣a3=d,…,an﹣an﹣1=d,….
所以
a2=a1+d
a3=a2+d=(a1+d)+d=a1+2d,
a4=a3+d=(a1+2d)+d=a1+3d,
……
由此,请你填空完成等差数列的通项公式:an=a1+( )d.
(3)﹣4041是不是等差数列﹣5,﹣7,﹣9…的项?如果是,是第几项?
【考点】规律型:数字的变化类
【分析】(1)根据公差定义进行计算得d,再推算第5项便可,
(2)由a2=a1+d,a3=a1+2d,a4=a1+3d…可知:序列号n比d的系数小1,故:an=a1+(n﹣1)d.
(3)先根据样例求出通项公式,再将﹣4041代入通项公式求出n,若n为正整数就可以断定﹣4041是此等差数列的某一项,反之则不是.
解:(1)根据题意得,d=10﹣5=5,
∵a3=15,
a4=a3+d=15+5=20,
a5=a4+d=20+5=25,
故答案为:5,25.
(2)∵a2=a1+d
a3=a2+d=(a1+d)+d=a1+2d,
a4=a3+d=(a1+2d)+d=a1+3d,
……
∴an=a1+(n﹣1)d
故答案为:n﹣1.
(3)根据题意得,
等差数列﹣5,﹣7,﹣9…的项的通项公式为:an=﹣5﹣2(n﹣1),
则﹣5﹣2(n﹣1)=﹣4041,
解之得:n=2019
∴﹣4041是等差数列﹣5,﹣7,﹣9…的项,它是此数列的第2019项.
【点评】本题考查了学生的分析、阅读等自学能力,解题的关键是要认真阅读题目,理解题目呈现的数学思想及数学方法.
(2019年江苏省扬州)如图,平面内的两条直线l1、l2,点A、B在直线l2上,过点A、B两点分别作直线l1的垂线,垂足分别为A1、B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T(AB,l2),特别地,线段AC在直线l2上的正投影就是线段A1C,请依据上述定义解决如下问题.
(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)= ;
(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积;
(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD).
【考点】正投影的定义,解直角三角形,相似三角形的判定与性质
【分析】(1)如图1,过C作CH⊥AB,根据正投影的定义求出BH的长即可;
(2)如图2,过点C作CH⊥AB于H,由正投影的定义可知AH=4,BH=9,再根据相似三角形的性质求出CH的长即可解决问题;
(3)如图3,过C作CH⊥AB于H,过B作BK⊥CD于K,求出CD、DK即可得答案.
解:(1)如图1,过C作CH⊥AB,垂足为H,
∵T(AC,AB)=3,
∴AH=3,
∵AB=5,
∴BH=AB-AH=2,
∴T(BC,AB)=BH=2,
故答案为:2;
(2)如图2,过点C作CH⊥AB于H,
则∠AHC=∠CHB=90°,
∴∠B+∠HCB=90°,
∵∠ACB=90°,
∴∠B+∠A=90°
∴∠A=∠HCB,
∴△ACH∽△CBH,
∴CH:BH=AH:CH,
∴CH2=AH·BH,
∵T(AC,AB)=4,T(BC,AB)=9,
∴AH=4,BH=9,
∴AB=AH+BH=13,CH=6,
∴S△ABC=(AB·CH)÷2=13×6÷2=39;
(3)如图3,过C作CH⊥AB于H,过B作BK⊥CD于K,
∵∠ACD=90°,T(AD,AC)=2,
∴AC=2,
∵∠A=60°,
∴∠ADC=∠BDK=30°,
∴CD=AC·tan60°=2,AD=2AC=4,AH=AC=1,
∴DH=4-1=3,
∵T(BC,AB)=6,CH⊥AB,
∴BH=6,
∴DB=BH-DH=3,
在Rt△BDK中,∠K=90°,BD=3,∠BDK=30°,
∴DK=BD·cos30°=,
∴T(BC,CD)=CK=CD+DK=+=.
【点睛】本题是三角形综合题,考查了正投影的定义,解直角三角形,相似三角形的判定与性质等知识,理解题意,正确添加辅助线,构建直角三角形是解题问题的关键.
(2019年湖南省株洲市)已知二次函数y=ax2+bx+c(a>0)
(1)若a=1,b=﹣2,c=﹣1
①求该二次函数图象的顶点坐标,
②定义:对于二次函数y=px2+qx+r(p≠0),满足方程y=x的x的值叫做该二次函数的“不动点”.求证:二次函数y=ax2+bx+c有两个不同的“不动点”.
(2)设b=c3,如图所示,在平面直角坐标系Oxy中,二次函数y=ax2+bx+c的图象与x轴分别相交于不同的两点A(x1,0),B(x2,0),其中x1<0,x2>0,与y轴相交于点C,连结BC,点D在y轴的正半轴上,且OC=OD,又点E的坐标为(1,0),过点D作垂直于y轴的直线与直线CE相交于点F,满足∠AFC=∠ABC.FA的延长线与BC的延长线相交于点P,若=,求二次函数的表达式.
【考点】二次函数综合题
【分析】(1)①把a、b、c的值代入二次函数解析式并配方得顶点式,即求得顶点坐标.
②根据定义,把y=x代入二次函数y=x2﹣2x﹣1,得x2﹣2x﹣1=x,根据根的判别式可知满足此方程的x有两个不相等的值,即原二次函数有两个不同的“不动点”.
(2)由条件∠AFC=∠ABC与=联想到证△PFC∽△PBA的对应边的比,即有.由DF⊥y轴且OC=OD可得DF∥x轴,由平行线分线段定理可证E也为CF中点,其中CE=,CF=2CE可用含c的式子表示.AB可用含x2﹣x1表示,通过韦达定理变形和b=c3代入可得用a、c表示AB的式子.又由∠AFC=∠ABC和∠AEF=∠CEB可证△AEF∽△CEB,对应边成比例可得式子AE?BE=CE?EF,把含c、x2、x1的式子代入再把韦达定理得到的x1+x2=﹣,x1x2=代入化简,可得c=﹣2a.即能用a表示CF、AB,代回到解方程即求得a的值,进而求b、c的值,得到二次函数表达式.
解:(1)①∵a=1,b=﹣2,c=﹣1
∴y=x2﹣2x﹣1=(x﹣1)2﹣2
∴该二次函数图象的顶点坐标为(1,﹣2)
②证明:当y=x时,x2﹣2x﹣1=x
整理得:x2﹣3x﹣1=0
∴△=(﹣3)2﹣4×1×(﹣1)=13>0
∴方程x2﹣3x﹣1=0有两个不相等的实数根
即二次函数y=x2﹣2x﹣1有两个不同的“不动点”.
(2)把b=c3代入二次函数得:y=ax2+c3x+c
∵二次函数与x轴交于点A(x1,0),B(x2,0)(x1<0,x2>0)
即x1、x2为方程ax2+c3x+c=0的两个不相等实数根
∴x1+x2=﹣,x1x2=
∵当x=0时,y=ax2+c3x+c=c
∴C(0,c)
∵E(1,0)
∴CE=,AE=1﹣x1,BE=x2﹣1
∵DF⊥y轴,OC=OD
∴DF∥x轴
∴
∴EF=CE=,CF=2
∵∠AFC=∠ABC,∠AEF=∠CEB
∴△AEF∽△CEB
∴,即AE?BE=CE?EF
∴(1﹣x1)(x2﹣1)=1+c2
展开得:1+c2=x2﹣1﹣x1x2+x1
1+c2=﹣﹣1﹣
c3+2ac2+2c+4a=0
c2(c+2a)+2(c+2a)=0
(c2+2)(c+2a)=0
∵c2+2>0
∴c+2a=0,即c=﹣2a
∴x1+x2=﹣=4a2,x1x2==﹣2,CF=2=2
∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=16a4+8
∴AB=x2﹣x1=
∵∠AFC=∠ABC,∠P=∠P
∴△PFC∽△PBA
∴
∴
解得:a1=1,a2=﹣1(舍去)
∴c=﹣2a=﹣2,b=c3=﹣4
∴二次函数的表达式为y=x2﹣4x﹣2
【点评】本题考查了求二次函数顶点式,一元二次方程的解法及根与系数的关系,相似三角形的判定和性质,因式分解.第(2)题条件较多且杂时,抓住比较特殊且有联系的条件入手,再通过方程思想不断寻找等量关系列方程,逐个字母消去,求得最终结果.
(2019年浙江省宁波市)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.
(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.
求证:四边形ABEF是邻余四边形.
(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.
(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.
【考点】四边形综合题
【分析】(1)AB=AC,AD是△ABC的角平分线,又AD⊥BC,则∠ADB=90°,则∠FBA与∠EBA互余,即可求解,
(2)如图所示(答案不唯一),四边形AFEB为所求,
(3)证明△DBQ∽△ECN,即可求解.
解:(1)∵AB=AC,AD是△ABC的角平分线,
∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,
∠FAB与∠EBA互余,
∴四边形ABEF是邻余四边形,
(2)如图所示(答案不唯一),
四边形AFEB为所求,
(3)∵AB=AC,AD是△ABC的角平分线,
∴BD=CD,
∵DE=2BE,
∴BD=CD=3BE,
∴CE=CD+DE=5BE,
∵∠EDF=90°,点M是EF的中点,
∴DM=ME,
∴∠MDE=∠MED,
∵AB=AC,
∴∠B=∠C,
∴△DBQ∽△ECN,
∴,
∵QB=3,
∴NC=5,
∵AN=CN,
∴AC=2CN=10,
∴AB=AC=10.
【点评】本题为四边形综合题,涉及到直角三角形中线定理、三角形相似等知识点,这种新定义类题目,通常按照题设顺序逐次求解,较为容易.
(2019年江苏省南京 )(概念认知):
城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(,)和B(,),用以下方式定义两点间距离:d(A,B)=+.
(数学理解):
(1)①已知点A(﹣2,1),则d(O,A)= ;②函数(0≤x≤2)的图像如图①所示,B是图像上一点,d(O,B)=3,则点B的坐标是 .
(2)函数(x>0)的图像如图②所示,求证:该函数的图像上不存在点C,使d(O,C)=3.
(3)函数(x≥0)的图像如图③所示,D是图像上一点,求d(O,D)的最小值及对应的点D的坐标.
(问题解决):
(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)
【考点】二次函数综合题
【分析】(1)①根据定义可求出d(O,A)=|0+2|+|0?1|=2+1=3;②由两点间距离:d(A,B)=|x1?x2|+|y1?y2|及点B是函数y=?2x+4的图象上的一点,可得出方程组,解方程组即可求出点B的坐标;
(2)由条件知x>0,根据题意得,整理得x2?3x+4=0,由△<0可证得该函数的图象上不存在点C,使d(O,C)=3.
(3)根据条件可得|x|+|x2?5x+7|,去绝对值后由二次函数的性质可求出最小值;
(4)以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=?x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处,可由d(O,P)≥d(O,E)证明结论即可.
解:(1)①由题意得:d(O,A)=|0+2|+|0?1|=2+1=3;
②设B(x,y),由定义两点间的距离可得:|0?x|+|0?y|=3,
∵0≤x≤2,
∴x+y=3,
∴,
解得: x=1,y=2,
∴B(1,2),
(2)假设函数的图像上存在点,使.
根据题意,得.
因为,所以.
所以.
方程两边乘,得.
整理,得.
因为,
所以方程无实数根.
所以函数的图像上不存在点,使.
(3)设.
根据题意,得.
因为,又,
所以.
所以当时,有最小值3,此时点的坐标是.
(4)如图,以为原点,所在直线为轴建立平面直角坐标系.将函数的图像沿轴正方向平移.直到与景观湖边界所在曲线有交点时停止.设交点为,过点作,垂足为.修建方案是:先沿方向修建到处,再沿方向修建到处.
理由:设过点的直线与轴相交于点.在景观湖边界所在曲线上任取一点,过点作直线与轴相交于点.因为,所以.同理.因为,所以.因此,上述方案修建的道路最短.
【点睛】本题考查了二次函数的综合应用,涉及的知识点有新定义,解方程(组),二次函数的性质,一次函数与反比例函数等,涉及知识点较多,较为复杂,熟练掌握相关知识是解题关键.