第三章 概率的进一步认识
3 用频率估计概率
/
1.某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( )
A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
D.掷一个质地均匀的正六面体骰子,向上的面点数是4
2.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次、200次,其中实验相对科学的是( )
A.甲组 B.乙组 C.丙组 D.丁组
3.某人在做掷硬币试验时,投掷m次,正面朝上有n次(即正面朝上的频率是P=),则下列说法中正确的是( )
A.P一定等于 B.P一定不等于
C.多投一次,P更接近 D.投掷次数逐渐增加,P稳定在附近
4.做抛掷同一枚啤酒瓶盖的重复试验,经过统计得“凸面朝上”的频率约为0.44,则可以估计抛掷这枚啤酒瓶盖出现“凸面朝上”的概率约为( )
A.22% B.44% C.50% D.56%
5.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为 .
6.一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球 个.
7.一个口袋里有25个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一个球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计口袋中的黄球有 个.
/
8.一只不透明的口袋中放有若干只红球和白球,这两种球除了颜色以外没有任何其他区别,将袋中的球摇均匀.每次从口袋中取出一只球记录颜色后放回再摇均匀,经过大量的试验,得到取出红球的频率是,求:
(1)取出白球的概率是多少?
(2)如果袋中的白球有18个,那么袋中的红球有多少个?
9.儿童节期间,某公园游戏场举行一场活动.有一种游戏的规则是:在一个装有8个红球和若干白球(每个球除颜色外,其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个海宝玩具.已知参加这种游戏的儿童有40 000人,公园游戏场发放海宝玩具8 000个.
(1)求参加此次活动得到海宝玩具的频率?
(2)请你估计袋中白球的数量接近多少个?
10.某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中.
(1)该运动员去年的比赛中共投中多少个3分球?
(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.
/
11.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?
操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.
活动结果:摸球试验活动一共做了50次,统计结果如下表:
/
推测计算:由上述的摸球试验可推算:
(1)盒中红球、黄球各占总球数的百分比分别是多少?
(2)盒中有红球多少个?
/
12.(海南)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为/,那么n的值是( )
A.6 B.7 C.8 D.9
(永州)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是 .
参考答案
第三章 概率的进一步认识
3 用频率估计概率
/
1.某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( D )
A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
D.掷一个质地均匀的正六面体骰子,向上的面点数是4
2.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次、200次,其中实验相对科学的是( D )
A.甲组 B.乙组 C.丙组 D.丁组
3.某人在做掷硬币试验时,投掷m次,正面朝上有n次(即正面朝上的频率是P=),则下列说法中正确的是( D )
A.P一定等于 B.P一定不等于
C.多投一次,P更接近 D.投掷次数逐渐增加,P稳定在附近
4.做抛掷同一枚啤酒瓶盖的重复试验,经过统计得“凸面朝上”的频率约为0.44,则可以估计抛掷这枚啤酒瓶盖出现“凸面朝上”的概率约为( B )
A.22% B.44% C.50% D.56%
5.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为 15 .
6.一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球 20 个.
7.一个口袋里有25个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一个球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计口袋中的黄球有 15 个.
/
8.一只不透明的口袋中放有若干只红球和白球,这两种球除了颜色以外没有任何其他区别,将袋中的球摇均匀.每次从口袋中取出一只球记录颜色后放回再摇均匀,经过大量的试验,得到取出红球的频率是,求:
(1)取出白球的概率是多少?
(2)如果袋中的白球有18个,那么袋中的红球有多少个?
解:(1)P(取出白球)=1-=.
(2)设袋中有红球x个,则=,解得x=6,经检验x=6是原方程的解,即袋中有6个红球.
9.儿童节期间,某公园游戏场举行一场活动.有一种游戏的规则是:在一个装有8个红球和若干白球(每个球除颜色外,其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个海宝玩具.已知参加这种游戏的儿童有40 000人,公园游戏场发放海宝玩具8 000个.
(1)求参加此次活动得到海宝玩具的频率?
(2)请你估计袋中白球的数量接近多少个?
解:(1)参加此项游戏得到海宝玩具的频率=,即=.
(2)设袋中共有x个球,则摸到红球的概率P(红球)=,∴=,解得x=40.
∴白球接近40-8=32(个).
10.某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中.
(1)该运动员去年的比赛中共投中多少个3分球?
(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.
解:(1)设该运动员共出手x个3分球,根据题意,得=12,解得x=640,0.25x=0.25×640=160(个),
答:运动员去年的比赛中共投中160个3分球.
(2)小亮的说法不正确;3分球的命中率为0.25,是相对于40场比赛来说的,而在其中的一场比赛中,虽然该运动员3分球共出手20次,但是该运动员这场比赛中不一定投中了5个3分球.
/
11.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?
操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.
活动结果:摸球试验活动一共做了50次,统计结果如下表:
/
推测计算:由上述的摸球试验可推算:
(1)盒中红球、黄球各占总球数的百分比分别是多少?
(2)盒中有红球多少个?
解:(1)由题意可知,50次摸球试验活动中,出现红球20次,黄球30次,∴红球所占百分比为20÷50=40%,黄球所占百分比为30÷50=60%.
答:红球占40%,黄球占60%.
(2)由题意可知,50次摸球试验活动中,出现有记号的球4次,∴总球数为8÷=100,∴红球数为100×40%=40.
答:盒中有红球40个.
/
12.(海南)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为/,那么n的值是( A )
A.6 B.7 C.8 D.9
(永州)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是 100 .
/