(共17张PPT)
人教版
七年级数学
5.3.2
命题 定理 证明
命题的概念
问题1 请同学读出下列语句
(1)如果两条直线都与第三条直线平行,那么这两
条直线也互相平行;
(2)两条平行线被第三条直线所截,同旁内角互补;
(3)对顶角相等;
(4)等式两边都加同一个数,结果仍是等式.
像这样判断一件事情的语句,叫做命题
2、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题。
如:画线段AB=CD。
判断一件事情的语句叫做命题。
注意:
1、只要对一件事情作出了判断,不管正确与否,都是命题。
如:相等的角是对顶角。
命题是由题设(或条件)和结论两部分组成。题设是已知事项,结论是由已知事项推出的事项。
两直线平行, 同位角相等。
题设(条件)
结论
2、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题。
如:画线段AB=CD。
判断一件事情的语句叫做命题。
注意:
1、只要对一件事情作出了判断,不管正确与否,都是命题。
如:相等的角是对顶角。
3、命题是陈述句。问句和感叹句都不是命题。
问题2 判断下列语句是不是命题?
(1)两点之间,线段最短;( )
(2)请画出两条互相平行的直线; ( )
(3)过直线外一点作已知直线的垂线; ( )
(4)如果两个角的和是90?,那么这两个角互余.( )
√
√
命题一般都写成“如果…,那么…”的形式。
“如果”后接的部分是题设,“那么”后接的部分是结论。
如命题:熊猫没有翅膀。改写为:
如果这个动物是熊猫,那么它就没有翅膀。
注意:添加“如果”、“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套。
命题的结构
命题由题设和结论两部分组成.
题设是已知事项,结论是由已知事项推出的事项.
指出下列各命题的题设和结论,并改写成“如果……那么……”的形式。
练习
1、对顶角相等;
2、内错角相等;
3、两平线被第三直线所截,同位角相等;
4、3<2;
5、同平行于一直线的两直线平行;
6、直角三角形的两个锐角互余;
7、等角的补角相等;
8、正数与负数的和为0。
下列句子哪些是命题?是命题的,指出是真命题还是假命题?
1、猪有四只脚;
2、内错角相等;
3、画一条直线;
4、四边形是正方形;
5、你的作业做完了吗?
6、同位角相等,两直线平行;
7、对顶角相等;
8、同垂直于一直线的两直线平行;
9、过点P画线段MN的垂线;
10、x>2
是
真命题
否
是
假命题
是
假命题
否
是
真命题
是
真命题
是
假命题
否
练习
否
数学定理变化
经过两点有且只有一条直线。
2、线段公理:
两点的所有连线中,线段最短。
4、平行线判定公理:
同位角相等,两直线平行。
5、平行线性质公理:
两直线平行,同位角相等。
1、直线公理:
3、平行公理:
经过直线外一点,有且只有一条直线与已知直线平行。
数学定理变化2
内错角相等,两直线平行。
同旁内角互补,两直线平行。
6、平行线的判定定理:
7、平行线的性质定理:
两直线平行,内错角相等。
两直线平行,同旁内角互补。
关于定理解析
已知:b∥c,a⊥b .
求证:a⊥c.
证明:∵ a⊥b(已知),
又∵ b∥c(已知),
∴∠1=∠2(两直线平行,同位角相等).
∴∠2=∠1=90?(等量代换).
∴∠1=90? (垂直的定义).
∴ a⊥c(垂直的定义).
检测
1.判断下列命题是真命题还是假命题,若是假命题,请举出反例。
①对顶角的平分线是一条直线 ( )
②一个角的补角必是钝角 ( )
③若ab=0,则a=0 ( )
④若a=0,则ab=0 ( )
⑤两边分别平行的两个角相等或互补 ( )
⑥同位角相等 ( )
⑦相等的角是对顶角 ( )
⑧ ( )
真命题
真命题
真命题
真命题
假命题
假命题
假命题
假命题
2.下列命题中,假命题的个数为( )
①若
②若
③若 则
④同旁内角互补
⑤两点确定一条直线
A.1个 B.2个 C.3个 D.4个
C
3. 对于“垂线段最短”有下列说法:
①是命题 ②是假命题 ③是真命题
④是定理,其中说法正确的有( )
A.② B.①② C.②④ D.①③④
4. 完成课本P22练习2
D
总结
1、命题:判断一件事情的语句叫命题。
2、公理:人们长期以来在实践中总结出来的,并作为判断其他命题真假的根据的命题,叫做公理。
3、定理:经过推理论证为正确的命题叫定理。也可作为继续推理的依据。
4、判断一个命题是真命题,可以从公理或定理出发,用逻辑推理的方法证明(公理和定理都是真命题);
判断一个命题是假命题,只要举出一个例子,说明该命题不成立就可以了,这种方法称为举反例。
(1)正确的命题称为真命题,错误的命题称为假命题。
(2)命题的结构:命题由题设和结论两部分构成,常可写成“如果…,那么…”的形式。
就到这里
谢谢