人教版七年级数学 下册 5.3.2 命题 定理 证明 课件(共41张PPT)

文档属性

名称 人教版七年级数学 下册 5.3.2 命题 定理 证明 课件(共41张PPT)
格式 zip
文件大小 1.1MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-02-11 11:20:10

图片预览

文档简介

(共41张PPT)


名言欣赏:
数学是打开科学大门的钥匙。
——培根
内错角相等,两直线平行。
同旁内角互补,两直线平行。
平行线的判定定理:
平行线的性质定理:
两直线平行,内错角相等。
两直线平行,同旁内角互补。
知识回顾
定理
5.3.2 命题 定理 证明
人教版七年级数学 下册




目标导航
1.理解命题,定理及证明的概念,会区分命题的题设和结论;(重点)
2. 会判断真假命题,知道证明的意义及必要性,了解反例的作用。(重点、难点)


认真阅读课本中5.3.2 命题 定理 证明的内容,完成下面练习并体验知识点的形成过程。
自主研学
小明的百米成绩有进步,已达到9秒9.
好!继续努力,争取超过10秒.
不要再抢啦!每个人发一个球!
有一位田径教练向领导汇报训练成绩;
相传,阎锡山在观看士兵篮球赛,双方争抢非常激烈.于是命令:
生活中的语句
下列语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作出判断?
1、对顶角相等;
2、画一个角等于已知角;
3、两直线平行,同位角相等;
4、a、b两条直线平行吗?
5、温柔的李明明;
6、玫瑰花是动物;
7、若a2=4,求a的值;
8、若a2=b2,则a=b。









对事情作了判断的语句是否正确?

×
×
生活中的语句

2、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题。
如:画线段AB=CD。
判断一件事情的语句叫做命题。
注意:
1、只要对一件事情作出了判断,不管正确与否,都是命题。
如:相等的角是对顶角。
命题是由题设(或条件)和结论两部分组成。题设是已知事项,结论是由已知事项推出的事项。
两直线平行, 同位角相等。


题设(条件)
结论

知识归纳
 1、判断下列语句是不是命题?

(1)两点之间,线段最短;( )

(2)请画出两条互相平行的直线; ( )

(3)过直线外一点作已知直线的垂线; ( )

(4)如果两个角的和是90?,那么这两个角互余.( )


即学即练
2、判断下列四个语句中,哪个是命题, 哪个不是命题?并说明理由:
(1)对顶角相等吗?
(2)画一条线段AB=2cm;
(3)两条直线平行,同位角相等;
(4)相等的两个角,一定是对顶角.
解:(3)(4)是命题,(1)(2)不是命题.
理由如下:(1)是问句,故不是命题;(2)是做一件事情,也不是命题.
即学即练
二、探究命题的组成
许多命题都由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.
命题常写成“如果……那么……”的形式,这时“如果”后接的部分是题设,“那么”后接的部分是结论.
有些命题的形式不明显,需要先将它们写成以上形式.
知识归纳
改写成“如果……那么……”:
如命题:熊猫没有翅膀。改写为:
如果这个动物是熊猫,那么它就没有翅膀。
注意:添加“如果”、“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,不可生搬硬套。
知识归纳
命题

题设
结论

已知事项
由已知事项推出的事项
两直线平行, 同位角相等


题设(条件)
结论

命题的组成:
 下列语句是命题吗?如果是,请将它们改
写成“如果……,那么……”的形式.
(1)两条直线被第三条直线所截,同旁内角互补;

(2)等式两边都加同一个数,结果仍是等式;

(3)互为相反数的两个数相加得0;

(4)同旁内角互补;

(5)对顶角相等.
如果两条直线被第三条直线所截,那么同旁内角互补;
如果等式两边都加同一个数,那么结果仍是等式;
如果两个数互为相反数,那么这两个数相加得0;
如果两个角是同旁内角,那么这两个角互补;
如果两个角互为对顶角,那么这两个角相等.
典型例题
二、探究命题的组成
把下列命题改写成“如果……那么……”的形式:
(1)互补的两个角不可能都是锐角;
(2)垂直于同一条直线的两条直线互相平行.
解:(1)如果两个角互补,那么这两个角不可能都是锐角;
(2)如果两直线都垂直于第三条直线,那么这两直线平行.
即学即练
下列是否都是命题,命题都是正确的吗?

(1)两条直线被第三条直线所截,同旁内角互补;

(2)等式两边都加同一个数,结果仍是等式;

(3)互为相反数的两个数相加得0;

(4)同旁内角互补;

(5)对顶角相等.



即学即练
有些命题如果题设成立,那么结论一定成立;而有些命题题设成立时,结论不一定成立。
正确的命题叫真命题,错误的命题叫假命题。
如命题:“如果两个角互补,那么它们是邻补角”就是一个错误的命题。
如命题:“如果一个数能被4整除,那么它也能被2整除”就是一个正确的命题。
确定一个命题真假的方法:
利用已有的知识,通过观察、验证、推理、举反例等方法。
知识归纳
(1)同旁内角互补( )
(4)两点可以确定一条直线( )
(7)互为邻补角的两个角的平分线互相垂直( )
(2)一个角的补角大于这个角( )
判断下列命题的真假.真的用“√”,假的用“× 表示.
(5)两点之间线段最短( )
(3)相等的两个角是对顶角( )
×

(6)同角的余角相等( )
×



×
即学即练
“因为早上我发现张三从玉米地那边过来,把一袋东西背回家,还发现我地里的玉米被人偷了,我知道张三家没有种玉米。
所以我家玉米肯定是张三偷的.”
片段1:一天早上,李老汉来到衙门里告状说:张三刚刚在他地里偷了一袋子玉米.吕县令立即派衙役将张三拘捕到县衙审讯:
吕县令问李老汉:“你怎知是张三偷了你的玉米?”

李老汉想证明什么?
他是怎么证明的?
这种从已知条件出发(列出理由),推断出结论的证明方法,叫综合法.综合法是最常用的证明方法.
根据李老汉的证明,你能断定玉米是张三偷的吗?你觉得有疑点吗?
分析证明
片段2:县官一时拿不定主意,就问旁边
的县丞道:“师爷,你怎么看?”
县丞说“这事要证明是张三干的,还得弄
清那袋子里装的是不是刚捌的玉米,还要
看看地里的脚印是不是张三的才行。
如果袋子里装的是刚捌的玉米,且地里的脚印是张三的,那就一定是他偷的。”
从结论出发,逆着寻找所需要的条件的思考过程,叫分析.
在分析的过程中,如果发现所需要的条件,都已具备或可从已知条件中推得.那么证明就很容易了.
分析证明
1、数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理。
2、有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理。
公理和定理都可作为判断其他命题真假的依据。
知识归纳
公理举例:
经过两点有且只有一条直线。
2、线段公理:
两点的所有连线中,线段最短。
4、平行线判定公理:
同位角相等,两直线平行。
5、平行线性质公理:
两直线平行,同位角相等。
1、直线公理:
3、平行公理:
经过直线外一点,有且只有一条直线与已知直线平行。
同角或等角的补角相等。
2、余角的性质:
同角或等角的余角相等。
4、垂线的性质:
①过一点有且只有一条直线与已知直线垂直;
5、平行公理的推论:
如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
1、补角的性质:
3、对顶角的性质:
对顶角相等。
②垂线段最短。
定理举例:
内错角相等,两直线平行。
同旁内角互补,两直线平行。
6、平行线的判定定理:
7、平行线的性质定理:
两直线平行,内错角相等。
两直线平行,同旁内角互补。
定理举例:
在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫作证明.
注意:
证明的每一步推理都要有根据,不能“想当然”.
知识归纳
证明:∵AB∥CD(已知),
∴∠BPQ=∠CQP(两直线平行,内错角相等). 又∵PG平分∠BPQ,QH平分∠CQP(已知),
∴∠GPQ= ∠BPQ,∠HQP= ∠CQP(角平
分线的定义),
∴∠GPQ=∠HQP(等量代换),
∴PG∥HQ(内错角相等,两直线平行).
例:如图,已知AB∥CD,直线AB,CD被直线MN所截,交点分别为P,Q,PG平分
∠BPQ,QH平分∠CQP,
求证PG∥HQ.
A
B
C
D
M
N
P
Q
H
G
典型例题
三、探究证明的意义及方法
注意:判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.
温馨提示
确定一个命题是假命题的方法:
例如,要判定命题“相等的角是对顶角”是假命题 ,可以举出如下反例:
如图,OC是∠AOB的平分线, ∠1=∠2,但它们不是对顶角.


1
2
A
O
C
B
只要举出一个例子(反例):它符合命题的题设,但不满足结论即可.
思考:如何判定一个命题是假命题呢?
典型例题
命题“同位角相等”是真命题吗?如果是,说出理由;如果不是,请举出反例.
三、探究证明的意义及方法
解: “同位角相等”不是真命题.
如,当两直线不平行时,同位角就不相等.
即学即练
四、小结
1.命题:判断一件事情的语句叫命题.
(1)正确的命题称为真命题,错误的命题称为假命题.
(2)命题的结构:命题由题设和结论两部分构成,常可写成“如果……那么……”的形式 .
2.定理:命题的正确性是经过推理证实的,这样的命题叫定理.也可作为继续推理的依据.

课堂小结
四、小结
3.证明:一个命题的正确性需要经过推理才能作出判断,这个推理过程叫做证明.
4. 判断一个命题是假命题,只要举出一个例子,说明该命题不成立就可以了,这种方法称为举反例.
课堂小结
1、判断下列命题是否正确:
(1)如果两个数的和为0,这两个数互为相反数;
(2)如果两个数互为相反数,这两个数的和为0;
(3)如果两个数互为相反数,这两个数的商为-1;
(4)如果两个数的商为-1,这两个数互为相反数;
(5)如果两个角是邻补角,这两个角互补;
(6)如果两个角互补,这两个角是邻补角.
正确
不正确
正确
正确
正确
不正确
检测目标
2、指出下列命题的题设和结论:
(1)如果两个数互为相反数,这两个数的商为-1.
(2)两直线平行,同旁内角互补.
(3)同旁内角互补,两直线平行.
(4)同角的余角相等.
题设:两个数互为相反数,结论:这两个数的商为-1 ;
题设:两直线平行,结论:同旁内角互补;
题设:同旁内角互补,结论:两直线平行;
题设:两个角是同一个角的余角,结论:这两个角相等.
检测目标
3、举出学过的2~3个真命题.
解:不唯一,如:
(1)如果两个数的和为0,这两个数互为相反数;
(2)如果两个数互为相反数,这两个数的和为0;
(3)如果两个数的商为-1,这两个数互为相反数.
检测目标
4、指出下列命题的题设和结论:
(1)如果AB⊥CD,垂足为O,那么∠AOC=90°;
(2)如果∠1=∠2,∠2=∠3,那么∠1=∠3;
(3)两直线平行,同位角相等.
解:(1)题设:AB⊥CD,垂足为O,结论:∠AOC=90°;
(2)题设:∠1=∠2,∠2=∠3,结论:∠1=∠3;
(3)题设:两直线平行,结论:同位角相等.
检测目标
5、在下面的括号内,填上推理的根据.
如图,∠A+∠B=180°,求证∠C+∠D=180°.
证明:∵∠A+∠B=180°,
∴AD∥BC( ).
∴∠C+∠D=180°( ).
同旁内角互补,两直线平行
两直线平行,同旁内角互补
检测目标
6、如图,已知直线b∥c,a⊥b.求证a⊥c.
证明:∵a⊥b(已知),
∴∠1=90°(垂直的定义).
又b∥c (已知),
∴∠1=∠2(两直线平行,同位角相等).
∴∠2=∠1=90°(等量代换).
∴ a⊥b (垂直的定义).

b
c





a
1
2

检测目标
我们已经站在了人生的起跑线上,为了实现心中的远大目标,我们正努力拼搏着。成功属于不畏困难、勇往直前的人。相信自己!
教师寄语

通过本课学习,你收获了什么?
课后作业:

完成教科书中相关练习题。