3.3用图象表示的变量间关系同步训练
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.一辆公共汽车从车站开出,加速一段时间后开始匀速行驶,过了一段时间,发现没多少油了,开到加油站加了油,几分钟后,又开始匀速行驶.下面哪一幅图可以近似刻画出该汽车在这段时间内的速度变化情况( )
A. B. C. D.
2.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是( )
A. B. C. D.
3.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是( )
A. B. C. D.
4.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )
A.乙前4秒行驶的路程为48米
B.在0到8秒内甲的速度每秒增加4米/秒
C.两车到第3秒时行驶的路程相等
D.在4至8秒内甲的速度都大于乙的速度
5.李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,其中的常量是()
A.金额 B.数量 C.单价 D.金额和数量
6.如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是( )
A.凌晨4时气温最低为-3℃
B.14时气温最高为8℃
C.从0时至14时,气温随时间增长而上升
D.从14时至24时,气温随时间增长而下降
7.小明出校门后先加速行驶一段距离,然后以大小不变的速度行驶,在距家门不远的地方开始减速,最后停下,下面可以近似地刻画出以上情况的是 ( ).
A. B.
C. D.
8.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子的价格打6折,设购买种子数量为千克,付款金额为元,则与的函数关系的图像大致是 ( )
A. B. C. D.
二、填空题
9.大家知道,冰层越厚,所承受的压力越大,这其中自变量是_____,因变量是_________.
10.甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示,根据图象回答:这是一次____米赛跑;先到达终点的是____;乙的速度是________.
11.用图象来表示两个变量之间的关系的方法叫做__________,在利用图象法表示变量之间的关系时,通常用__________方向的数轴(称为__________)上的点表示自变量,用__________方向的数轴(称为__________)上的点表示因变量.
12.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是________(只需填序号)
13.某市出租车收费与行驶路程关系如图所示.如果小明姥姥乘出租车去小明家花去了元,那么小明始姥乘车路程为__________千米.
14.如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费________元.
三、解答题
15.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,如图所示是小明从家到学校这一过程中所走的路程 s(米)与时间 t(分)之间的关系.
(1)小明从家到学校的路程共 米,从家出发到学校,小明共用了 分钟;
(2)小明修车用了多长时间?
(3)小明修车以前和修车后的平均速度分别是多少?
16.温度的变化是人们在生活中经常谈论的话题,请你根据下图回答下列问题:
(1)上午9时的温度是多少?这一天的最高温度是多少?
(2)这一天的温差是多少?从最低温度到最高温度经过了多长时间?
(3)在什么时间范围内温度在下降?图中的A点表示的是什么?
17.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图).
(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?
(2)10时和13时,他分别离家多远?
(3)他到达离家最远的地方是什么时间?离家多远?
(4)11时到12时他行驶了多少千米?
(5)他可能在哪段时间内休息,并吃午餐?
(6)他由离家最远的地方返回时的平均速度是多少?
18.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.
(1)农民自带的零钱是多少?
(2)试求降价前y与x之间的关系式
(3)由表达式你能求出降价前每千克的土豆价格是多少?
(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
参考答案
1.B
【解析】
【分析】
横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.
【详解】
解:公共汽车经历:加速?匀速?减速到站?加速?匀速,
加速:速度增加,
匀速:速度保持不变,
减速:速度下降,
到站:速度为0.
观察四个选项的图象是否符合题干要求,只有B选项符合.
故选B.
【点睛】
主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
2.B
【解析】
∵y轴表示当天爷爷离家的距离,X轴表示时间
又∵爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,
∴刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近
又知去时是跑步,用时较短,回来是慢走,用时较多
∴选项B中的图形满足条件.
故选B.
3.C
【解析】
试题分析:由题意可知,1小时以前的速度是60千米/时,而1小时之后的速度是100千米/时,速度越大倾斜角度越大,故选C
考点:函数的图象
4.C
【解析】
【详解】
A.根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;
B.根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;
C.根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;
D.在4至8秒内甲的速度都大于乙的速度,正确;
故选C.
5.C
【解析】
【分析】
根据常量与变量的定义即可判断
【详解】
常量是固定不变的量,变量是变化的量,
单价是不变的量,而金额是随着数量的变化而变化,
故选C
【点睛】
此题考查常量与变量,难度不大
6.C
【解析】
试题分析:A.∵由图象可知,在凌晨4点函数图象在最低点﹣3,∴凌晨4时气温最低为﹣3℃,故本选项正确;
B.∵由图象可知,在14点函数图象在最高点8,∴14时气温最高为8℃,故本选项正确;
C.∵由图象可知,从4时至14时,气温随时间增长而上上升,不是从0点,故本选项错误;
D.∵由图象可知,14时至24时,气温随时间增长而下降,故本选项正确.
故选C.
考点:函数的图象.
7.C
【解析】
从速度变化情况来看,先匀加速行驶,再匀速行驶,最后减速为0,
故选C.
【点睛】本题考查了函数的图象,解题的关键是此题主要看速度变化即可,时间只是个先后问题.
8.B
【解析】
试题分析:当时,y=5x;当x>2时,y=10+5×0.6(x-2)=3x+4故选B
考点:1、函数图像;2、分段函数
9.冰层的厚度 冰层所承受的压力
【解析】
【分析】
根据常量与变量,即可解答.
【详解】
解:大家知道,冰层越厚,所承受的压力越大,这其中自变量是冰层的厚度,因变量是冰层所承受的压力.
故答案为:冰层的厚度,冰层所承受的压力.
【点睛】
本题考查了常量与变量,解决本题的关键是熟记常量与变量.
10.100 甲 8米/秒
【解析】
(1)由图可知,两人所跑路程最大值为100米,
∴这是一次100米赛跑;
(2)由图可知,甲先到达终点;
(3)由图可知,乙跑完100米用了12.5秒,
∴乙的速度为:100÷12.5=8(米/秒).
故答案为:(1). 100 (2). 甲 (3). 8米/秒.
11. 图象法 水平 横轴 竖直 纵轴
【解析】用图象来表示两个变量之间的关系的方法叫做图象法,在利用图象法表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量,
故答案为:图象法,水平,横轴,竖直,纵轴.
12.④②
【解析】
∵小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回,
∴表示母亲离家的时间与距离之间的关系的图象是②;
∵父亲看了10分报纸后,用了15分返回家,
∴表示父亲离家的时间与距离之间的关系的图象是④
13.13
【解析】
设AB的解析式为y=kx+b,由题意,得,解得:,
∴直线AB的解析式为y=1.6x+1.2(x≥3),
当y=22时,22=1.6x+1.2,解得:x=13,
故答案为:13.
【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,根据解析式由函数值求自变量的值的运用.解答时求出函数的解析式是关键.
14.7.4
【解析】
试题分析:由图,当0<t≤3时,y为恒值,y=2.4;当t>3时,直线过点(3,2.4)、(5,4.4),可根据待定系数法列方程,求函数关系式,然后代入当t=8时的函数可知y=8-0.6=7.4元.
故答案为:7.4
15.(1)2000米,20分钟;(2)5;(3) 100(m/min),200(m/min)
【解析】
【分析】
(1)根据纵轴的最大值为2000,可得出学校离家的距离为2000米;根据横轴的最大值为20,可得出小明到达学校时共用时间20分钟;
(2)用15-10可求出修车时间
(3)根据速度=路程÷时间,分别求出修车前、后的平均速度.
【详解】
(1)∵纵轴的最大值为2000,∴学校离家的距离为2000米.
∵横轴的最大值为20,∴小明到达学校时共用时间20分钟
(2)15-10=5(分钟),小明修车用了5分钟.
(3)修车前的骑行平均速度为1000÷10=100(米/分钟),修车后的骑行平均速度为(2000-1000)÷(20-15)=200(米/分钟)
【点睛】
此题考查了学生从图象中读取信息的数形结合能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.
16.(1)27℃,37℃;(2)14℃,12小时;(3)0时至3时及15时至24时, A点表示21点时的气温.
【解析】
【分析】
(1)观察函数图象找出时间9时的温度和这一天的最高温度;
(2)找出函数图象的最高点(最高温度)和最低点(最低温度),然后再找最高点和最低点分别对应的时间;用最高温度减去最低温度得到这天的温差,最低温度到最高温度经过的时间等于最高点和最低点对应的时间的差;
(3)观察图象0时到3时和15时到24时温度在下降.
【详解】
解:(1)利用图象得出上午9时的温度是27℃,这一天的最高温度是37℃.
(2)这一天的温差是37-23=14(℃),从最低温度到最高温度经过了15-3=12(小时).
(3)温度下降的时间范围为0时至3时及15时至24时,图中的A点表示的是21点时的气温.
故答案为:(1)27℃,37℃;(2)14℃,12小时;(3)0时至3时及15时至24时, A点表示21点时的气温.
【点睛】
本题考查了函数图象,利用函数图象反映两变量之间的变化规律,通过该规律解决有关的实际问题.
17.(1) 自变量是时间,因变量是距离;(2) 10时他距家15千米,13时他距家30千米;
(3) 12:00时他到达离家最远的地方,离家30千米;(4)11千米;
(5) 12:00~13:00休息并吃午餐;(6) 15千米/时
【解析】
解:(1)图象表示了时间、距离的关系,自变量是时间,因变量是距离. (2)由图象看出10时他距家15千米,13时他距家30千米. (3)由图象看出12:00时他到达离家最远的地方,离家30千米. (4)由图象看出11时距家19千米,12时距家30千米,11时到12时他行驶了30- 19=11(千米). (5)由图象看出12:00~13:00时距离没变且时间较长,得12:00~13:00休息并吃午餐. (6)由图象看出回家时用了2小时,路程是30千米,所以回家的平均速度是30÷2=15(千米/时).
18.(1) 5元(2) y=x+5(0≤x≤30);(3)0.5元/千克;(4)他一共带了70千克土豆.
【解析】
试题分析:(1)根据题意得出自带的零钱;(2)根据图象可知降价前售出的土豆数量为30千克,总金额为15元,然后计算单价;根据降价后的价格和金额求出降价后售出的数量,然后计算总质量.
试题解析:(1)根据图示可得:农民自带的零钱是5元.
(2)(20-5)÷30=0.5(元/千克) 答:降价前他出售的土豆每千克是0.5元.
(3)(26-20)÷0.4+30=15+30=45(千克) 答:他一共带了45千克土豆.
考点:一次函数的应用.