2019-2020学年沪教版六年级数学下册 第5章 有理数 单元测试题
一.选择题(共8小题)
1.下面的四个数,标在数轴上,表示这个数的点最接近于0的是( )
A. B.﹣ C.0.4 D.﹣1
2.下列说法正确的是( )
A.一个数的绝对值一定是正数
B.任何正数一定大于它的倒数
C.﹣a一定是负数
D.零与任何一个数相乘,其积一定是零
3.a2表示( )
A.a+a B.a×2 C.a×a D.a÷a
4.已知a 是真分数(a≠0),比较a2与2a的大小( )
A.a2<2a B.a2=2a C.a2>2a D.不能确定
5.将厚0.1毫米的一张纸对折,再对折,这样折4次,这张纸厚( )毫米.
A.1.6 B.0.8 C.0.4 D.0.32
6.83表示( )
A.8+8+8 B.8×3 C.8×8×8
7.点A为数轴上表示﹣2的点,当点A沿数轴移动4个单位长度到点B时,点B所表示的数为( )
A.2 B.﹣6 C.4 D.2或﹣6
8.下面各组中,两个式子结果相等的是( )
A.42 和4×4 B.0.12 和0.1×2
C.52 和5+5
二.填空题(共8小题)
9.23=
0.13=
43=
53=
10.在数轴上的□里填上适当的数.
11.
直线上,点A表示的数是 ,如果点B在数“4”处,而点C是线段AB的中点,那么点C表示的数是 .
12.在数轴上,在的 边.
13.在数轴上与﹣2的距离等于4的点表示的数是 .
14.1+3+5+7+5+3+1= 2+ 2= .
15.x2表示2个x相乘,2x表示2个x相加. .
16.写出数轴上点A、B、C、D、E所表示的数:
A: ;B: ;C: ;D: ;E:
三.判断题(共5小题)
17.在表示数的直线上,左边的数总比右边的数大. (判断对错)
18.在数轴上表示﹣1的点在表示﹣2的点的左边. (判断对错)
19.a的平方就是a×2. .(判断对错)
20.一个数的平方一定比这个数的2倍大.… .(判断对错)
21.数轴上,负数都在0的左边. (判断对错)
四.计算题(共2小题)
22.已知|a﹣3|+|﹣b+5|=0,计算2a+b的值.
23.直接写出得数.
52﹣22= 0.23= 0.3÷=
6﹣= ÷=
五.操作题(共1小题)
24.如图,点A表示分数,请在数轴上标出表示分数的点B.
六.解答题(共3小题)
25.回答下列问题
(1)填空:
①(2×3)2= ②22×32= ③(﹣)2= ④()2×82= ⑤()3= ⑥()3×33=
(1)想一想(1)中每组中的两个算式的结果是否相等?
(2)猜一猜:当n为正整数时,(ab)n等于什么?
(3)试应用上面的发现计算(1)2000×()2000
26.一个点从数轴上某点出发,先向右移动5个单位长度,再向左移动2个长度单位,这时这个点表示的数为1,则起点表示的数是多少?请你用图表示出来.
27.(1)妈妈今天给小丽10元,买本子和笔用去了10元.小丽收入10元记作+10元,用去10元,记作 .
(2)在数轴上的□里填上适当的数.
(3)比较大小:﹣2〇+2
(4)数轴上,0左边的数是 数.
参考答案与试题解析
一.选择题(共8小题)
1.【分析】数轴是规定了原点(0点)、方向和单位长度的直线,在原点(0点)左边的点所表示的数都是负数,右边的点表示的数都是正数,然后把各个选项中的数,表示出离原点几个单位长,然后再比较这几个单位长的大小,离原点越近,单位长越小,据此解答.
【解答】解:A、,表示在原点(0点)右边个单位长;
B、﹣表示在原点(0点)左边个单位长;
C、0.4表示在原点(0点)左边0.4个单位长;
D、﹣1表示在原点(0点)左边1个单位长;
<0.4<<1
所以,﹣离原点最近,也就是最接近0.
故选:B.
【点评】此题考查在数轴上表示正负数,所有的负数都在0的左边,正数都在0的右边.
2.【分析】根据正数和负数、有理数的乘法、绝对值的性质对各个选项进行判断即可得出答案.
【解答】解:A、一个数的绝对值一定是非负数,故本选项错误;
B、1的倒数是1,所以任何正数一定大于它的倒数,说法错误;
C、﹣a不一定是负数,有可能是正数,也有可能是0,故本选项错误;
D、0乘任何数都得0,故本选项正确.
故选:D.
【点评】此题考查了正数和负数、绝对值的性质、有理数的乘法,掌握相关概念、理解相反数的定义是解题的关键.
3.【分析】一个数的平方表示两个这个数相乘,据此可知a2表示两个a相乘.
【解答】解:a2表示两个a相乘,即a2=a×a.
故选:C.
【点评】此题考查一个数平方的含义:表示两个这个数相乘,而不是表示两个这个数相加.
4.【分析】因为a是一个非零真分数,所以a<2,所以a×a小于2×a,即a2<2a.
【解答】解:由题意知,a是一个非零真分数,所以a<2,
故a×a<2×a,即a2<2a.
故选:A.
【点评】此题解答的关键是根据“a为真分数”这一条件,推出a<2,利用a<2进行比较.
5.【分析】将厚0.1毫米的一张纸对折,再对折,这样折4次,这张纸厚24个0.1毫米,算出得数即可.
【解答】解:这张纸厚:0.1×24=1.6(毫米).
故选:A.
【点评】此题考查将一张纸对折若干次后的厚度的计算方法.
6.【分析】83表示3个8相乘,即8×8×8.
【解答】解:83表示8×8×8.
故选:C.
【点评】此题主要考查的是有理数的乘方的计算方法.
7.【分析】点A为数轴上表示﹣2的点,即点A在原点左边表示2个单位长的点,当点A沿数轴移动4个单位长度到点B时,有两种情况:一是向右移动;二是向左移动.若向右移动,移动4个单位长度时,到原点右边表示2个长度单位的点,即2(或+2),若向左移动4个单位,B点在表示6个单位长度的点,即﹣6.
【解答】解:点A为数轴上表示﹣2的点,当点A沿数轴移动4个单位长度到点B时,点B所表示的数为2或﹣6.
故选:D.
【点评】此题是考查数轴的认识.数轴是规定了原点(0点)、方向和单位长度的直线,在原点(0点)左边的点所表示的数都是负数,右边的点表示的数都是正数.注意,点B既可向右移动也可向左移动.
8.【分析】判断两个式子的结果是否相等,可以从式子的意义,也可以通过计算得数,再进行比较,逐项分析再做出选择.
【解答】解:A、因为42=16,4×4=16,所以42=4×4;
B、因为0.12=0.01,0.1×2=0.2,所以0.12≠0.1×2;
C、因为52=25,5+5=10,所以52≠5+5.
故选:A.
【点评】此题考查一个数的平方与一个数的2倍的大小比较的方法,可以从式子的意义,也可以通过计算得数,再进行比较.
二.填空题(共8小题)
9.【分析】求几个相同因数的积的运算,叫做乘方.
【解答】解:23=8
0.13=0.001
43=64
53=125
故答案为:8;0.001;64;125.
【点评】此题主要考查的是有理数的乘方的计算方法.
10.【分析】数轴是规定了原点(0点)、方向和单位长度的一条直线.原点的左边是负数,一般从原点向左的每个单位长度分别是﹣1、﹣2、﹣3…;右边是正数,从原点向右每个单位长度分别是1、2、3…,本题每个单位长度都是2;据此解答即可.
【解答】解:
【点评】本题是考查数轴的认识.数轴是规定了原点(0点)、方向和单位长度的一条直线.
11.【分析】数轴是规定了原点(0点)、方向和单位长度的一条直线.原点的左边是负数,从原点向左的每个单位长度分别是﹣1、﹣2、﹣3…;右边是正数,从原点向右每个单位长度分别是1、2、3…,据此解答.
【解答】解:
直线上,点A表示的数是﹣2,如果点B在数“4”处,则AB长2+4=6,而点C是线段AB的中点,6÷2=3那么点C表示的数是1.
故答案为:﹣2,1.
【点评】本题是考查数轴的认识.数轴是规定了原点(0点)、方向和单位长度的一条直线.
12.【分析】根据“在数轴上表示的两个数,右边的数总比左边的数大”解答即可.
【解答】解:因为,<,
所以,在数轴上,在的左边.
故答案为:左.
【点评】解答本题关键是掌握数轴的特点.
13.【分析】在数轴上与﹣2的距离等于4的点既可在﹣2的右边,也可在﹣2的左边.当在﹣2的右边时,表示离开原点2个单位长度,即2;当在﹣2的左边时,表示离开原点6个单位长度,即﹣6.
【解答】解:如图
在数轴上与﹣2的距离等于4的点表示的数是 2或﹣6.
故答案为:2或﹣6.
【点评】此题是考查数轴的认识.数轴是规定了原点(0点)、方向和单位长度的直线,在原点(0点)左边的点所表示的数都是负数,右边的点表示的数都是正数.
14.【分析】根据1+3+5+7+…+2n﹣1=n2,解答即可.
【解答】解:1+3+5+7+5+3+1
=(1+3+5+7)+(5+3+1)
=42+32
=16+9
=25
故答案为:4,3,25.
【点评】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.
15.【分析】x2表示两个x相乘,2x表示两个x相加,它们的意义不同.
【解答】解:x2表示两个x相乘,2x表示两个x相加,它们的意义不同.
故答案为:√.
【点评】此题考查2x与x2的区别.
16.【分析】在数轴上,原正左边的为负数,右边的为正数,原点(O)表示0,0既不是正数,也不是负数,它是正、负数分界点.A在原点左边2.5个单位长,表示﹣2.5,B在原点,表示0,C在原点右边2.5个单位长,表示+2.5,D在原点左边4个单位长,表示﹣4,E在原点右边1个单位长,表示+1.
【解答】解:如图
写出数轴上点A、B、C、D、E所表示的数:
A:﹣2.5;B:0;C:+2.5;D:﹣4;E:+1.
故答案为:﹣2.5,0,+2.5,﹣4,+1.
【点评】此题是考查数轴的认识.数轴是规定了原点(0点)、方向和单位长度的直线,在原点(0点)左边的点所表示的数都是负数,右边的点表示的数都是正数.
三.判断题(共5小题)
17.【分析】根据数轴上各数的特点:右边的数总比左边的数大,即可作出判断.
【解答】解:规定了原点、单位长度和、正方向的直线叫数轴;在数轴上表示的两个数,右边的数总比左边的数大,即左边的数总比右边的数小;
所以“在表示数的直线上,左边的数总比右边的数答”的说法是错误的.
故答案为:×.
【点评】考查了数轴的认识.解答此题要明确:数轴上的点表示的数,右边的数总比左边的数大.
18.【分析】根据题意,画出数轴,找出﹣1和﹣2,再根据其位置关系进行判断.
【解答】解:数轴上﹣1、﹣2如下:
在数轴上表示﹣1的点在表示﹣2的点的右边,不是左边,原题说法错误.
故答案为:×.
【点评】本题是考查数轴的认识.数轴是规定了原点(0点)、方向和单位长度的一条直线.
19.【分析】要求a2与2a相等还是不相等,要分清它们的意义,或者是举例子,把a看成一个具体的数字,算出答案就可以比较出来相等还是不相等.
【解答】解:a2=a×a
2a=2×a
假设当a=3时,a2=3×3=9,2a=2×3=6
所以a2与2a相等说法不正确.
故答案为:“×”.
【点评】本题关键是考查学生对于a2和2a的意义的理解,让学生学会举反例子是最简单的方法.
20.【分析】举反例即可,1的2倍是2,1的平方比1的2倍小.
【解答】解:因为,1的2倍是2,1的平方比1的2倍小,
所以,一个数的平方一定比这个数的2倍大错误.
故答案为:×.
【点评】本题考查的是有理数的乘方,解答此题的关键是举反例.
21.【分析】数轴是规定了原点(0点)、方向和单位长度的直线,在原点(0点)左边的点所表示的数都是负数,右边的点表示的数都是正数.据此判断即可.
【解答】解:由分析可知:数轴上所有负数都在0的左边,所有的正数都在0的右边.
所以“数轴上,负数都在0的左边”的说法是正确的.
故答案为:√.
【点评】此题考查了对数轴的认识,原点记作0,负数在原点左边,正数在原点右边.
四.计算题(共2小题)
22.【分析】绝对值大于或等于0,|a﹣3|+|﹣b+5|=0,只可能是a﹣3=0,﹣b+5=0,据此解出a和b 的值,进而代入2a+b解答即可.
【解答】解:a﹣3=0,a=3
﹣b+5=0,b=5
把a=3,b=5代入2a+b得
2a+b
=3×2+5
=11
答:2a+b=11.
【点评】解答此题的关键是知道两个数的绝对值和为0,则这两个数分别为0.
23.【分析】根据分数乘、除法的计算方法和分数减法的计算方法进行计算.
【解答】解:
52﹣22=21 0.23=0.008 0.3÷=
6﹣=5 ÷=
【点评】本题综合考查了学生口算分数乘、除法和分数减法的计算能力.
五.操作题(共1小题)
24.【分析】从0到A一共有2格,所以每小格表示÷2=,再根据分数除法的意义求出里面有几个,那么B点就离0有多少个小格,由此求解.
【解答】解:÷2=
÷=3
所以B的位置如下:
【点评】解决这类型的问题关键是明确每小格表示的数量.
六.解答题(共3小题)
25.【分析】(1)先根据乘方的计算方法计算出得数,再比较发现规律;
(2)由此推出两个非0数的积的平方等于这两个数平方的积.
(3)根据以上结论即可计算.
【解答】解:(1)填空:
①(2×3)2=62=36
②22×32=4×9=36
③(﹣)2=(﹣4)2=16
④()2×82=×64=16
⑤()3=(﹣)3=﹣
⑥()3×33=(﹣)×27=﹣
(1)比较发现(1)中每组中的两个算式的结果相等;
(2)当n为正整数时,(ab)n=anbn;
(3))(1)2000×()2000
=[1×(﹣)]2000
=[﹣1]2000
=1
故答案为:36,36,16,16,﹣,﹣;相等;anbn.
【点评】此是题可推出规律:两个非需要数积的n次方等于这两个数n次方之积(n为正整数).
26.【分析】这个点现在表示的数为1,将其先向右移动2个长度单位到3,再向左移动5个长度单位到﹣2,即为起点的数.
【解答】解:
答:起点表示的数是﹣2.
故答案为:﹣2.
【点评】此题考查在数轴上移动某点,移动到某个位置,求原来的起点,向相反的方向移动相同的单位长度即可.
27.【分析】(1)主要用正负数来表示具有意义相反的两种量:收入记为正,则支出就记为负,直接得出结论即可;
(2)数轴是规定了原点(0点)、方向和单位长度的一条直线.原点的左边是负数,一般从原点向左的每个单位长度分别是﹣1、﹣2、﹣3…;右边是正数,从原点向右每个单位长度分别是1、2、3…,本题每个单位长度都是2;
(3)根据:正数与负数以0为分界点,正数、0都比负数大;
(4)数轴是规定了原点(0点)、方向和单位长度的直线,在原点(0点)左边的点所表示的数都是负数,右边的点表示的数都是正数.
【解答】解:(1)妈妈今天给小丽10元,买本子和笔用去了10元.小丽收入10元记作+10元,用去10元,记作﹣10元.
故答案为:﹣10元.
(2)
(3)﹣2<+2
(4)数轴上0左边的数是负数;
故答案为:(1)﹣10元(2)﹣10,0,10;(3)<;(4)负.
【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负;还考查了学生正、负数大小比较的方法,只要掌握方法就很好解答.但要注意,在负数与负数比较大小时,不要认为负号后面的数越大这个数越大;以及考查数轴的认识,在数轴上0是正、负数的分界点,“0”的左边的点所表示的数都是负数,右边的点表示的数都是正数.