苏科版九年级数学上册第2章:圆的综合 几何题解题方法拓展复习——辅助线添加学案(无答案)

文档属性

名称 苏科版九年级数学上册第2章:圆的综合 几何题解题方法拓展复习——辅助线添加学案(无答案)
格式 zip
文件大小 120.5KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2020-02-16 11:16:32

图片预览

文档简介










圆的综合几何题的解题方法-辅助线的添加
【易错知识点汇总】
易错点1:几个公式一定要牢记:三角形、平行四边形、菱形、矩形、正方形、梯形、圆的面积公式,圆周长公式,弧长,扇形面积,圆锥的侧面积以及全面积以及弧长与底面周长,母线长与扇形的半径之间的转化关系。
易错点2:对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题。
易错点3:对切线的定义及性质理解不深,不能准确的利用切线的性质进行解题以及对切线的判定方法两种方法使用不熟练。
易错点4:考查圆与圆的位置关系时,相切有内切和外切两种情况,包括相交也存在两圆圆心在公共弦同侧和异侧两种情况,学生很容易忽视其中的一种情况。(2题分类讨论)
易错点5:与圆有关的位置关系把握好d与R和R+r,R-r之间的关系以及应用上述的方法求解。
易错点6:圆周角定理是重点,同弧(等弧)所对的圆周角相等,直径所对的圆周角是直角。直角的圆周角所对的弦是直径,一条弧所对的圆周角等于它所对的圆心角的一半。
易错点7:对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。(选题最后一题考)
【圆中常见的辅助线的作法】
1.遇到弦时(解决有关弦的问题时)
常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
作用:①利用垂径定理;
②利用圆心角及其所对的弧、弦和弦心距之间的关系;
③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。
【例1】如图,已知△ABC内接于⊙O,∠A=45°,BC=2,求⊙O的面积。




【例2】如图,⊙O的直径为10,弦AB=8,P是弦AB上一个动点,
那么OP的长的取值范围是_________.
2、遇到有直径时
常常添加(画)直径所对的圆周角。
作用:利用圆周角的性质,得到直角或直角三角形。
【例3】如图,AB是⊙O的直径,AB=4,弦BC=2,
∠B=


3.遇到90°的圆周角时
常常连结两条弦没有公共点的另一端点。
作用:利用圆周角的性质,可得到直径。
【例4】如图,AB、AC是⊙O的的两条弦,∠BAC=90°,
AB=6,AC=8,⊙O的半径是
4.遇到弦时
常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。
作用:①可得等腰三角形;
②据圆周角的性质可得相等的圆周角。
【例5】如图,弦AB的长等于⊙O的半径,点C在弧AMB上,
则∠C的度数是________.
5.遇到有切线时
(1)常常添加过切点的半径(连结圆心和切点)
作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形。
【例6】如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB的延长线于D,求证:AC=CD.




(2)常常添加连结圆上一点和切点
作用:可构成弦切角,从而利用弦切角定理。
6、遇到证明某一直线是圆的切线时
(1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段,再证垂足到圆心的距离等于半径。
【例7】如图所示,已知AB是⊙O的直径,AC⊥L于C,BD⊥L于D,且AC+BD=AB。
求证:直线L与⊙O相切。
 

(2)若直线过圆上的某一点,则连结这点和圆心(即作半径),再证其与直线垂直。
【例8】如图,△ABO中,OA= OB,以O为圆心的圆经过AB中点C,且分别交OA、OB于点E、F 求证:AB是⊙O切线;



7.遇到两相交切线时(切线长)
常常连结切点和圆心、连结圆心和圆外的一点、连结两切点。
作用:据切线长及其它性质,可得到:①角、线段的等量关系;②垂直关系;③全等、相似三角形。
【例9】如图,P是⊙O外一点,PA、PB分别和⊙O切于A、B,C是弧AB上
任意一点,过C作⊙O的切线分别交PA、PB于D、E,若△PDE的周
长为12,则PA长为______________



8.遇到三角形的内切圆时
连结内心到各三角形顶点,或过内心作三角形各边的垂线段。
作用:利用内心的性质,可得:
①内心到三角形三个顶点的连线是三角形的角平分线;
②内心到三角形三条边的距离相等。
【例10】如图,△ABC中,∠A=45°,I是内心,则∠BIC=




【例11】如图,Rt△ABC中,AC=8,BC=6,∠C=90°,⊙I分别切AC,BC,AB于D,E,F,求Rt△ABC的内心I与外心O之间的距离.


9.遇到三角形的外接圆时,连结外心和各顶点
作用:外心到三角形各顶点的距离相等。
【课后冲浪】
一、证明解答题
1.已知:P是⊙O外一点,PB,PD分别交⊙O于A、B和C、D,且AB=CD.求证:PO平分∠BPD.




2.如图,ΔABC中,∠C=90°,圆O分别与AC、BC相切于M、N,点O在AB上,如果AO=15㎝,BO=10㎝,求圆O的半径.


3.已知:□ABCD的对角线AC、BD交于O点,BC切⊙O于E点.求证:AD也和⊙O相切.

4.如图,学校A附近有一公路MN,一拖拉机从P点出发向PN方向行驶,已知∠NPA=30°,AP=160米,假使拖拉机行使时,A周围100米以内受到噪音影响,问:当拖拉机向PN方向行驶时,学校是否会受到噪音影响?请说明理由.如果拖拉机速度为18千米∕小时,则受噪音影响的时间是多少秒?



5.如图,已知AB是⊙的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F.求证:DE=CF.




6.已知:如图,AB是⊙O的直径,BC是⊙O的切线,连AC交⊙O于D,过D作⊙O的切线EF,交BC于E点.求证:OE//AC.





.

.



.