2020年苏科版数学八年级下册第8章《认识概率》综合卷含答案

文档属性

名称 2020年苏科版数学八年级下册第8章《认识概率》综合卷含答案
格式 zip
文件大小 201.3KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2020-02-16 00:12:46

图片预览

文档简介

2020年苏科版数学八年级下册
第8章《认识概率》综合卷
一、单选题
1.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( )
A.3个球都是黑球 B.3个球都是白球
C.三个球中有黑球 D.3个球中有白球
2.下列事件中,不可能事件的是( )
A.投掷一枚均匀的硬币10次,正面朝上的次数为5次
B.任意一个五边形的外角和等于
C.从装满白球的袋子里摸出红球
D.大年初一会下雨
3.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是(  )
A.两枚骰子向上一面的点数之和大于1
B.两枚骰子向上一面的点数之和等于1
C.两枚骰子向上一面的点数之和大于12
D.两枚骰子向上一面的点数之和等于12
4.下列事件:①经过有交通信号灯的路口,遇到红灯;②掷一枚均匀的正方体骰子,骰子落地后朝上的点数不是奇数便是偶数;③长为5cm、5cm、11cm的三条线段能围成一个三角形;④买一张体育彩票中奖。其中随机事件有( )
A.1个 B.2个 C.3个 D.4个
5.下列事件中必然发生的事件是(  )
A.一个图形平移后所得的图形与原来的图形不全等
B.不等式的两边同时乘以一个数,结果仍是不等式
C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品
D.随意翻到一本书的某页,这页的页码一定是偶数
6.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为( )
A.20 B.30 C.40 D.50
7.某科研小组,为了考查某河野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河中野生鱼有( )
A.8000条 B.4000条 C.2000条 D.1000条

8.“学习强国”的英语“Learningpower”中,字母“n”出现的频率是( )
A.1 B. C. D.2
9.下列说法正确的是( )
A.“任意画出一个等边三角形,它是轴对称图形”是随机事件
B.某种彩票的中奖率为,说明每买1000张彩票,一定有一张中奖
C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为
D.“概率为1的事件”是必然事件
10.下列4个对事件的判断中,所有正确结论的序号是(  )
①“哥哥的年龄比弟弟的年龄大”是必然事件;②“书柜里有6本大小相同,厚度差不多的书,从中随机摸出一本是小说”是随机事件;③在1万次试验中,每次都不发生的事件是不可能事件;④在1万次试验中,每次都发生的事件是必然事件.
A.① B.①② C.①③④ D.①②③④

二、填空题
11.袋子中有20个除颜色外完全相同的小球.在看不到球的条件下,随机地从袋子中摸出一个球,记录颜色后放回,将球摇匀.重复上述过程150次后,共摸到红球30次,由此可以估计口袋中的红球个数是__.
12.在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有___个.
13.一个口袋中有4个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回袋中,摇匀后再随机摸出一球,记下颜色……,不断重复上述过程,童威共摸了100次,其中20次摸到黑球,根据上述数据,可估计口袋中的白球大约有_____个.
14.在一个不透明的盒子里装有红、黑两种颜色的球共60只,这些球除颜色外其余完全相同.为了估计红球和黑球的个数,七(2)班的数学学习小组做了摸球实验.他们将球搅匀后,从盒子里随机摸出一个球记下颜色,再把球放回盒子中,多次重复上述过程,得到表中的一组统计数据:
摸球的次数n 50 100 300 500 800 1000
摸到红球的次数m 14 33 95 155 241 298
摸到红球的频率 0.28 0.33 0.317 0.31 0.301 0.298


请估计:当次数n足够大时,摸到红球的频率将会接近_____.(精确到0.1)

15.指出下列事件是必然事件、随机事件,还是不可能事件:任意掷一枚骰子,“出现的点数是6”是_____________,“出现的点数是7”是_____________,“出现的点数是整数”是______________
16.一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值约为__________.
17.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:
评价条数 等级 餐厅 五星 四星 三星 二星 一星 合计
甲 538 210 96 129 27 1000
乙 460 187 154 169 30 1000
丙 486 388 81 13 32 1000


(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、三星、二星和一星.)小芸选择在________(填"甲”、“乙"或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.

18.如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验结果.

那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性 _________“凹面向上”的可能性.(填“大于”,“等于”或“小于”).

19.在一个不透明的盒子中装有n个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n的值大约是_______.

20.由于各人的习惯不同,双手交叉时左手大拇指在上或右手大拇指在上是一个随机事件(分别记为A,B),曾老师对他任教的学生做了一个调查,统计结果如下表所示:
2012届 2013届 2014届 2015届 2016届
参与人数 106 110 98 104 112
B 54 57 49 51 56
频率 0.509 0.518 0.500 0.490 0.500


若曾老师所在学校有2 000名学生,根据表格中的数据,在这个随机事件中,右手大拇指在上的学生人数可以估计为________名.

三、解答题
21.九八班从三名男生(含小强)和五名女生中选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n名.
(1)当n为何值时,男生小强参加是必然事件?
(2)当n为何值时,男生小强参加是不可能事件?
(3)当n为何值时,男生小强参加是随机事件?






22.下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?
(1)太阳从西边落山;
(2)某人的体温是100 ℃;
(3)a2+b2=0;
(4)某个等腰三角形中任意两个角都不相等;
(5)经过有信号灯的十字路口,遇见红灯.






23.某班“2016年联欢会”中,有一个摸奖游戏:有4张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,2张是哭脸,现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.
(1)现在小芳和小霞分别有一次翻牌机会,若正面是笑脸,则小芳获奖;若正面是哭脸,则小霞获奖,她们获奖的机会相同吗?判断并说明理由.
(2)如果小芳、小明都有翻两张牌的机会.翻牌规则:小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现笑脸就获奖.请问他们获奖的机会相等吗?判断并说明理由.






24.为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.
(1)填空:样本容量为   ,a=   ;
(2)把频数分布直方图补充完整;
(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.







25.2019年女排世界杯中,中国女排以11站全胜且只丢3局的成绩成功卫冕本届世界杯冠军.某校七年级为了弘扬女排精神,组建了排球社团,通过测量同学们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.

(1)填空:样本容量为___,a=___;
(2)把频数分布直方图补充完整;
(3)若从该组随机抽取1名学生,估计这名学生身高低于165cm的概率.





26.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球试验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:
摸球的次数n 100 200 300 500 800 1000 3000
摸到白球的次数m 63 124 178 302 488 600 1800
摸到白球的频率 0.63 0.62 0.593 0.604 0.61        


(1)完成上表;
(2)若从盒子中随机摸出一个球,则摸到白球的概率P=   ;(结果保留小数点后一位)
(3)估算这个不透明的盒子里白球有多少个?



27.在一个不透明的盒子里装有颜色不同的黑、白两种球共60个,它们除颜色不同外,其余都相同,王颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中搅匀,经过大量重复上述摸球的过程,发现摸到白球的频率定于0.25.
(1)请估计摸到白球的概率将会接近________;
(2)计算盒子里白、黑两种颜色的球各有多少个?
(3)如果要使摸到白球的概率为,需要往盒子里再放入多少个白球?







28.在一个不透明的盒子里装有黑、白两种颜色的球共50个,这些球除颜色外其余完全相同.王颖做摸球试验,搅匀后,她从盒子里随机摸出一个球记下颜色后,再把球放回盒子中,不断重复上述过程,如表是试验中的一组统计数据:
摸球的次数n 100 200 300 500 800 1000 3000
摸到白球的次数m 65 124 178 302 480 600 1800
摸到白球的频率 0.65 0.62 0.593 0.604 0.6 0.6 0.6


(1)请估计:当n很大时,摸到白球的频率将会接近   ;(精确到0.1)
(2)若从盒子里随机摸出一个球,则摸到白球的概率的估计值为   ;
(3)试估算盒子里黑、白两种颜色的球各有多少个?








29.一个口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法估算其中白球的个数:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色…,小明重复上述过程共摸了100次,其中40次摸到白球,请回答:
(1)口袋中的白球约有多少个?
(2)有一个游乐场,要按照上述红球、白球的比例配置彩球池,若彩球池里共有1200个球,则需准备多少个红球?







30.一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:
实验次数 20 40 60 80 100 120 140 160
“兵”字面朝上频数 14 a 38 47 52 66 78 88
相应频率 0.7 0.45 0.63 0.59 0.52 b 0.56 0.55


(1)请直接写出a,b的值;
(2)如果实验继续进行下去,根据上表的数据,这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少;
(3)如果做这种实验2 000次,那么“兵”字面朝上的次数大约是多少?























参考答案
一、选择题
1.B 2.C 3.D 4.B 5.C
6.A 7.B 8.C 9.D 10.A

二、填空题
11.4 12.7. 13.16. 14.0.3
15.随机事件 不可能事件 必然事件 16.3 17.丙
18.小于 19.10 20.1000

三、解答题
21.(1)1;(2)4;(3)2或3.
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
(1)当n为1时,男生小强参加是必然事件.
(2)当n为4时,男生小强参加是不可能事件.
(3)当n为2或3时,男生小强参加是随机事件.

22.(1) “太阳从西边落山”是必然事件;(2) “某人的体温是100 ℃”是不可能事件;(3) “a2+b2=0”是随机事件;(4) “某个等腰三角形中任意两个角都不相等”是不可能事件;(5) “经过有信号灯的十字路口,遇见红灯”是随机事件.
【分析】
根据必然事件、不可能事件、随机事件的概念进行判断即可.
【详解】
(1)根据生活常识,可知太阳一定从西边落山,所以“太阳从西边落山”是必然事件.
(2)因为正常人体的体温都在37 ℃左右,所以“某人的体温是100 ℃”是不可能事件.
(3)当a=b=0时,a2+b2=0,当a,b中至少有一个不等于0时,a2+b2为正数,所以“a2+b2=0”是随机事件.
(4)根据等腰三角形的性质,等腰三角形中至少有两个角相等,所以“某个等腰三角形中任意两个角都不相等”是不可能事件.
(5)经过有信号灯的十字路口,可能遇见红灯,也可能不遇见红灯,所以“经过有信号灯的十字路口,遇见红灯”是随机事件.


23.(1)相同,理由见解析;(2)机会不相等,理由见解析.
【解析】
试题分析:(1)因为有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,所以她们获奖的概率都是,获奖的机会相同;(2)先列举出小芳和小明翻牌的所有情况,然后分别计算出她们获奖的概率,比较她们获奖的概率,若概率相等,那么她们的获奖机会相等,若概率不相等,那么她们获奖机会不相等.
试题解析:
(1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,
∴她们获奖的概率都是,
∴她们获奖机会相同;
(2)他们获奖机会不相等,理由如下:
小芳:
第一张 第二张 笑1 笑2 哭1 哭2
笑1 笑1,笑1 笑2,笑1 哭1,笑1 哭2,笑1
笑2 笑1,笑2 笑2,笑2 哭1,笑2 哭2,笑2
哭1 笑1,哭1 笑2,哭1 哭1,哭1 哭2,哭1
哭2 笑1,哭2 笑2,哭2 哭1,哭2 哭2,哭2

∵共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,
∴P(小芳获奖)==;
小明:
第一张 第二张 笑1 笑2 哭1 哭2
笑1 笑2,笑1 哭1,笑1 哭2,笑1
笑2 笑1,笑2 哭1,笑2 哭2,笑2
哭1 笑1,哭1 笑2,哭1 哭2,哭1
哭2 笑1,哭2 笑2,哭2 哭1,哭2

∵共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,
∴P(小明获奖)==,
∵P(小芳获奖)≠P(小明获奖),
∴他们获奖的机会不相等.

24.(1)故答案为100,30;(2)见解析;(3)0.45.
【分析】
(1)用A组的频数除以它所占的百分比得到样本容量,然后计算B组所占的百分比得到a的值;
(2)利用B组的频数为30补全频数分布直方图;
(3)计算出样本中身高低于160cm的频率,然后利用样本估计总体和利用频率估计概率求解.
【详解】
解:(1),
所以样本容量为100;
B组的人数为,
所以,则;
故答案为,;
(2)补全频数分布直方图为:

(3)样本中身高低于的人数为,
样本中身高低于的频率为,
所以估计从该地随机抽取名学生,估计这名学生身高低于的概率为.

25.(1)样本容量为100,a=30;(2)见解析(3)
【分析】
(1)用A组的频数除以它所占的百分比得到样本容量,然后计算B组所占的百分比得到a的值;
(2)利用B组的频数为30补全频数分布直方图;
(3)计算出样本中身高低于165cm的频率,然后利用样本估计总体和利用频率估计概率求解.
【详解】
解:(1)15÷ =100,
所以样本容量为100;
B组的人数为100-15-35-15-5=30,
所以a%= ×100%=30%,则a=30;
故答案为100,30;
(2)补全频数分布直方图为:

(3)样本中身高低于165cm的人数为15+30+35=80,
样本中身高低于165cm的频率为,
所以估计从该地随机抽取1名学生,估计这名学生身高低于165cm的概率为.

26.(1)填表见解析;(2)0.6;(3)24个.
【分析】
(1)用频数除以频率即可;
(2)概率接近于(1)得到的频率;
(3)白球个数=球的总数×得到的白球的概率.
【详解】
(1)600÷1000=0.60;
1800÷3000=0.60;
(2)∵随着实验次数的增多,频率逐渐稳定到0.6,
∴若从盒子中随机摸出一个球,则摸到白球的概率P=0.6,
故答案为:0.6.
(3)盒子里白颜色的球有40×0.6=24个.

27.(1)0.25;(2)盒子里白、黑两种颜色的球各有15个、45个;(3)15
【分析】
(1)根据摸到白球的频率,可得“摸到白色球”的概率;
(2)用总数乘以摸到白球的概率,得出白球的数量,进而得到黑球的数量;
(2)设需要往盒子里再放入x个白球,根据题意得出方程,解方程即可.
【详解】
(1)∵摸到白球的频率为0.25,∴“摸到白色球”的概率=0.25.
(2)∵60×0.25=15,60﹣15=45,∴盒子里白球为15个,黑球45个;
(3)设需要往盒子里再放入x个白球,根据题意得:

解得:x=15.
答:需要往盒子里再放入15个白球.

28.(1)0.6;(2)0.6;(3)盒子里黑颜色的球有20只,盒子白颜色的球有30只
【分析】
(1)观察表格找到逐渐稳定到的常数即可;
(2)概率接近于(1)得到的频率;
(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数,问题得解.
【详解】
(1)∵摸到白球的频率约为0.6,
∴当n很大时,摸到白球的频率将会接近0.6;
故答案为:0.6;
(2)∵摸到白球的频率为0.6,
∴若从盒子里随机摸出一只球,则摸到白球的概率的估计值为0.6;
(3)黑白球共有20只,
白球为:50×0.6=30(只),
黑球为:50﹣30=20(只).
答:盒子里黑颜色的球有20只,盒子白颜色的球有30只.

29.(1)小明可估计口袋中的白球的个数是6个.
(2)需准备720个红球。
【解析】
试题分析:
(1)用白球的个数:(白球的个数+红球的个数)=40:100,列方程求解;
(2)用彩球的总数乘以,即可得到红球的个数.
试题解析:
(1)解:设白球的个数为x个,
根据题意得:
解得:x=6小明可估计口袋中的白球的个数是6个.
(2)1200× =720.
答:需准备720个红球。

30.(1)a=18,b=0.55(2)估计概率的大小为0.55(3)“兵”字面朝上的次数大约是1100次
【解析】试题分析:(1)根据图中信息,用频数除以实验次数,得到频率,由于试验次数较多,可以用频率估计概率;
(2)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,即可估计概率的大小.
(3)根据利用频率估计概率可以得出出现“兵”字概率会接近于0.55,故可以得出游戏规则.
试题解析:(1)a=18,b=0.55.
(2)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55,稳定在0.55左右,
故估计概率的大小为0.55.
(3)2000×0.55=1100(次).
∴“兵”字面朝上的次数大约是1100次.