11.3 《反比例函数的应用》同步测试
一、选择题:
1、下列关系描述与所给的函数图象(如图所示)中,对应正确的是( )
①矩形的面积一定时,它的两邻边y(cm)与x(cm)之间的关系
②拖拉机工作时,每小时耗油量相同,油箱中余油量y(L)与工作时间x(h)之间的关系
③某城市一天气温y(℃)随时间x(h)变化的关系
④立方体的表面积y(c)与它的边长x(cm)之间的关系.
A. 关系①对应乙,②对应丙 B. 关系②对应甲,③对应丁
C. 关系④对应甲,①对应丁 D. 关系③对应丁,④对应乙
2、一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是( )
A.v=320t B.v= C.v=20t D.v=
3、已知长方形的面积为20 cm2,设该长方形一边长为ycm,另一边长为x cm,则y与x之间的函数图像大致是 ( )
4、为了更好保护水资源,造福人类,某工厂计划建一个容积V(m3)一定的污水处理池,池的底面积S(m2)与其深度h(m)满足关系式:V=Sh(V≠0),则S关于h的函数图像大致是 ( )
5、下列问题中,两个变量间的函数关系式是反比例函数的是 ( )
A. 小颖每分钟可以制作2朵花,x分钟可以制作y朵花
B. 体积为10cm3的长方体,高为hcm,底面积为Scm2
C. 用一根长50cm的铁丝弯成一个矩形,一边长为xcm,面积为Scm2
D. 汽车油箱中共有油50升,设平均每天用油5升,x天后油箱中剩下的油量为y升
6、如图,A(,).B(,).C(,)是函数的图象在第一象限分支上的三个点,且<<,过A.B.C三点分别作坐标轴的垂线,得矩形ADOH、BEON、CFOP,它们的面积分别为S1、S2、S3,则下列结论中正确的是 ( )
A. S1C.S2< S3< S1 D.S1=S2=S3
7、近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5m,则y与x的函数关系式为( )
A.y= B.y= C.y= D.y=
8、某厂现有500吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是( )
A. B. C.y=500x(x≥0) D.y=500x(x>0)
9、在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度p(单位:kg/m3)与体积V(单位:m3)满足函数关系式p=(k为常数,k≠0),其图像如图所示,则k的值为 ( )
A.9 B.-9 C.4 D.-4
10、小兰画了一个函数的图象如图,那么关于x的分式方程的解是( )
A.x=1 B.x=2 C.x=3 D.x=4
二、填空题:
1、某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式 .
2、圆柱的侧面积为8,高h与底面半径r间的函数关系式为_______.
3、在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=_______.
4、学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场. 设它的一边长为x(米),则另一边的长y(米)与x的函数关系式为 .
5、A、B两地之间的高速公路长为300km,一辆小汽车从A地去B地,假设在途中是匀速直线运动,速度为vkm/h,到达时所用的时间是th,那么t是v的 函数,t可以写成v的函数关系式是 .
6、有一面积为10的梯形,其上底长是下底长的,若下底长为x,高为y,则y与x的函数关系是_______.
7、已知,在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图像如图所示,则当力达到20牛时,此物体在力的方向上移动的距离是_______米.
8、某村利用秋冬季节兴修水利,计划请运输公司用90~150天(含90与150天)完成总量300万米3的土石方运送,设运输公司完成任务所需的时间为y(单位:天),平均每天运输土石方量为x(单位:万米3),请写出y关于x的函数关系式并给出自变量x的取值范围 .
三、解答题:
1、已知一个长方体的体积是100cm3,它的长是y cm,宽是5cm,高是xcm.
(1)写出用高表示长的函数关系式;
(2)求出自变量x的取值范围;
(3)当x=3时,求y的值.
2、已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.
(1)写出y与x之间的函数关系式;
(2)当x=2cm时,求y的值.
3、如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为xm,DC的长为ym.
(1)求y与x之间的函数关系式;
(2)若围成的矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.
4、正在新建中的会议厅的地面约500,现要铺贴地板砖.
(1)所需地板砖的块数与每块地板砖的面积S有怎样的函数关系?
(2)为了使地面装饰美观,决定使用蓝、白两种颜色的地板砖组合成蓝白相间的图案,
每块地板砖的规格为80×80,蓝、白两种地板砖数相等,则需这两种地板砖各多少块?
5、为了预防“流感”,某学校对教室采用药熏消毒法进行消毒, 已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y关于x 的函数关系式为: ________, 自变量x 的取值范围是:_______,药物燃烧后y关于x的函数关系式为_______.
(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;
(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
6、水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:
观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.
(1)写出这个反比例函数的解析式,并补全表格;
(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?
(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?