17.1变量与函数
教学目的 知识与技能:1.掌握常量和变量、自变量和因变量(函数)基本概念; 2.了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系.过程与方法:1.通过实际问题,引导学生直观感知,领悟函数基本概念的意义; 2.引导学生联系代数式和方程的相关知识,继续探索数量关系,增强数学建模意识,列出函数关系式.情感与态度: 经历对熟悉的具体事例数量关系的探索过程,体验函数是刻画事物变化规律的?常用方法,初步形成用函数描述事物变化规律的习惯.
教学重点 在具体的问题情境中,探究出相应的函数关系式
知识难点 对函数概念和对应思想的理解
教学过程 教学方法 和手段
引入 在学习与生活中,经常要研究一些数量关系,先看下面的问题.问题1 如图是某地一天内的气温变化图.看图回答: (1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温. (2)这一天中,最高气温是多少?最低气温是多少? (3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低? 解 (1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃; (2)这一天中,最高气温是5℃.最低气温是-4℃; (3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低.从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢? 创设情景
新课 教学 问题2 银行对各种不同的存款方式都规定了相应的利率,下表是2002年7月中国工商银行为“整存整取”的存款方式规定的年利率:观察上表,说说随着存期x的增长,相应的年利率y是如何变化的.解 随着存期x的增长,相应的年利率y也随着增长.问题3 收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:观察上表回答: (1)波长l和频率f数值之间有什么关系? (2)波长l越大,频率f 就________.解 (1) l 与 f 的乘积是一个定值,即 lf=300 000,或者说. (2)波长l越大,频率f 就越小 .问题4 圆的面积随着半径的增大而增大.如果用r表示圆的半径,S表示圆的面积则S与r之间满足下列关系:S=_________.利用这个关系式,试求出半径为1 cm、1.5 cm、2 cm、2.6 cm、3.2 cm时圆的面积,并将结果填入下表:由此可以看出,圆的半径越大,它的面积就_________.解 S=πr2.圆的半径越大,它的面积就越大.在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable).上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量(independent variable),y是因变量(dependent variable),此时也称y是x的函数(function).表示函数关系的方法通常有三种: (1)解析法,如问题3中的,问题4中的S=π r2,这些表达式称为函数的关系式. (2)列表法,如问题2中的利率表,问题3中的波长与频率关系表. (3)图象法,如问题1中的气温曲线.问题的研究过程中,还有一种量,它的取值始终保持不变,我们称之为常量(constant),如问题3中的300 000,问题4中的π等.例1 下表是某市2000年统计的该市男学生各年龄组的平均身高. (1)从表中你能看出该市14岁的男学生的平均身高是多少吗? (2)该市男学生的平均身高从哪一岁开始迅速增加? (3)上表反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?解 (1)平均身高是146.1cm; (2)约从14岁开始身高增加特别迅速; (3)反映了该市男学生的平均身高和年龄这两个变量之间的关系,其中年龄是自变量,平均身高是因变量.例2 写出下列各问题中的关系式,并指出其中的常量与变量: (1)圆的周长C与半径r的关系式; (2)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(时)的关系式; (3)n边形的内角和S与边数n的关系式.解 (1)C=2π r,2π是常量,r、C是变量; (2)s=60t,60是常量,t、s是变量; (3)S=(n-2)×180,2、180是常量,n、S是变量.
课堂 练习 练习1、2、3补充练习:“龟兔赛跑”讲述了这样一个故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来?,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是?先到达了终点……用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则如图17-1?-4所示的图象中与故事情节相吻合的是 (D)
小结与作业
课堂 小结 1.函数概念包含:(1)两个变量;(2)两个变量之间的对应关系. 2.在某个变化过程中,可以取不同数值的量,叫做变量;数值始终保持不变的量,叫做常量.例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量,y是因变量. 3.函数关系三种表示方法:(1)解析法;(2)列表法;(3)图象法.
本课 作业 习题17.1 第1题和第2题
本课教育评注(课堂设计理念,实际教学效果及改进设想)