北师大版九年级下册3.3垂径定理2020年同步练习卷
一.选择题(共10小题)
1.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=( )
A.2cm B.3cm C.5cm D.8cm
2.如图,AB为⊙O的直径,点C在⊙O上,若AB=4,,则O到AC的距离为( )
A.1 B.2 C. D.
3.如图,将⊙O沿着弦AB翻折,劣弧恰好经过圆心O.如果弦AB=4,那么⊙O的半径长度为( )
A.2 B.4 C.2 D.4
4.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MN=,那么BC等于( )
A.5 B. C.2 D.
5.如图,在⊙O中,分别将、沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是( )
A.8 B.16 C.32 D.32
6.已知:如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( )
A.3 B.4 C.3 D.4
7.如图,在平面直角坐标系中,⊙P的圆心是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为4,则a的值是( )
A.2 B. C. D.3+
8.如图,著名水乡乌镇的一圆拱桥的拱顶到水面的距离CD为8m,水面宽AB为8m,则拱桥的半径OC为( )
A.4m B.5m C.6m D.8m
9.如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是( )
A.2 B.2 C.2 D.4
10.如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB=40m,点C是的中点,点D是AB的中点,且CD=10m,则这段弯路所在圆的半径为( )
A.25m B.24m C.30m D.60m
二.填空题(共5小题)
11.如图,AC是⊙O的直径,弦BD⊥AC于点E,连接BC过点O作OF⊥BC于点F,若BD=12cm,AE=4cm,则OF的长度是 cm.
12.某公路上有一隧道,顶部是圆弧形拱顶,圆心为O,隧道的水平宽AB为24m,AB离地面的高度AE=10 m,拱顶最高处C离地面的高度CD为18m,在拱顶的M,N处安装照明灯,且M,N离地面的高度相等都等于17m,则MN= m.
13.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为 .
14.如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为 米.
15.在圆柱形油槽内装有一些油,截面如图所示,直径MN为100cm,油面宽AB为60cm,如果再注入一些油后,油面宽变为80cm,则油面上升
三.解答题(共6小题)
16.⊙O中,直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,且∠DEB=60°,求CD的长.
17.如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)
18.如图,Rt△ABC中,∠ACB=90°,O为△ABC角平分线的交点,以OC为半径的⊙O交△ABC于D、E、F、G.
(1)求证:CD=EF;
(2)若⊙O的半径为4,AE=2,求AB的长.
19.如图,OD是⊙O的半径,AB是弦,且OD⊥AB于点C连接AO并延长交⊙O于点E,若AB=8,CD=2,求⊙O半径OA的长.
20.如图,已知Rt△ABC,∠BAC=90°,BC=5,AC=2,以A为圆心、AB为半径画圆,与边BC交于另一点D.
(1)求BD的长;
(2)连接AD,求∠DAC的正弦值.
21.如图,一圆弧形桥拱的圆心为E,拱桥的水面跨度AB=80米,桥拱到水面的最大高度DF为20米.求:
(1)桥拱的半径;
(2)现水面上涨后水面跨度为60米,求水面上涨的高度为 米.
参考答案与试题解析
一.选择题(共10小题)
1.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=( )
A.2cm B.3cm C.5cm D.8cm
【分析】根据垂径定理可得出CE的长度,在Rt△OCE中,利用勾股定理可得出OE的长度,再利用AE=AO+OE即可得出AE的长度.
【解答】解:∵弦CD⊥AB于点E,CD=8cm,
∴CE=CD=4cm.
在Rt△OCE中,OC=5cm,CE=4cm,
∴OE===(cm),
∴AE=AO+OE=5+3=8(cm).
故选:D.
2.如图,AB为⊙O的直径,点C在⊙O上,若AB=4,,则O到AC的距离为( )
A.1 B.2 C. D.
【分析】连接BC,作OE⊥AC于E.根据勾股定理求出BC,利用三角形的中位线定理即可解决问题.
【解答】解:连接BC,作OE⊥AC于E.
∵AB是直径,
∴∠ACB=90°,
∴BC===2,
∵OE⊥AC,
∴AE=EC,
∵AO=OB,
∴OE=BC=,
故选:C.
3.如图,将⊙O沿着弦AB翻折,劣弧恰好经过圆心O.如果弦AB=4,那么⊙O的半径长度为( )
A.2 B.4 C.2 D.4
【分析】作OD⊥AB于D,连接OA,先根据勾股定理列方程可解答.
【解答】解:作OD⊥AB于D,连接OA.
∵OD⊥AB,AB=4,
∴AD=AB=2,
由折叠得:OD=AO,
设OD=x,则AO=2x,
在Rt△OAD中,AD2+OD2=OA2,
(2)2+x2=(2x)2,
x=2,
∴OA=2x=4,即⊙O的半径长度为4;
故选:B.
4.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MN=,那么BC等于( )
A.5 B. C.2 D.
【分析】先根据垂径定理得出M、N分别是AB与AC的中点,故MN是△ABC的中位线,由三角形的中位线定理即可得出结论.
【解答】解:∵OM⊥AB,ON⊥AC,垂足分别为M、N,
∴M、N分别是AB与AC的中点,
∴MN是△ABC的中位线,
∴BC=2MN=2,
故选:C.
5.如图,在⊙O中,分别将、沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是( )
A.8 B.16 C.32 D.32
【分析】过O作OH⊥AB交⊙O于E,反向延长EO交CD于G,交⊙O于F,连接OA,OB,OD,根据平行线的性质得到EF⊥CD,根据折叠的性质得到OH=OA,推出△AOD是等边三角形,得到D,O,B三点共线,且BD为⊙O的直径,求得∠DAB=90°,同理,∠ABC=∠ADC=90°,得到四边形ABCD是矩形,于是得到结论.
【解答】解:过O作OH⊥AB交⊙O于E,反向延长EO交CD于G,交⊙O于F,
连接OA,OB,OD,
∵AB∥CD,
∴EF⊥CD,
∵分别将、沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,
∴OH=OA,
∴∠HAO=30°,
∴∠AOH=60°,
同理∠DOG=60°,
∴∠AOD=60°,
∴△AOD是等边三角形,
∵OA=OB,
∴∠ABO=∠BAO=30°,
∴∠AOB=120°,
∴∠AOD+∠AOB=180°,
∴D,O,B三点共线,且BD为⊙O的直径,
∴∠DAB=90°,
同理,∠ABC=∠ADC=90°,
∴四边形ABCD是矩形,
∴AD=AO=4,AB=AD=4,
∴四边形ABCD的面积是16,
故选:B.
6.已知:如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( )
A.3 B.4 C.3 D.4
【分析】作OM⊥AB于M,ON⊥CD于N,连接OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OM的长.
【解答】解:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,
由垂径定理、勾股定理得:OM=ON==3,
∵弦AB、CD互相垂直,
∴∠DPB=90°,
∵OM⊥AB于M,ON⊥CD于N,
∴∠OMP=∠ONP=90°
∴四边形MONP是矩形,
∵OM=ON,
∴四边形MONP是正方形,
∴OP=3
故选:C.
7.如图,在平面直角坐标系中,⊙P的圆心是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为4,则a的值是( )
A.2 B. C. D.3+
【分析】作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.
【解答】解:过P作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,如图,
∵⊙P的圆心坐标是(3,a),
∴OC=3,PC=a,
把x=3代入y=x得y=3,
∴D点坐标为(3,3),
∴CD=3,
∴△OCD为等腰直角三角形,
∴△PED也为等腰直角三角形,
∵PE⊥AB,
∴AE=BE=AB=2,
在Rt△PBE中,PB=3,
∴PE===1,
∴PD=PE=,
∴a=3+.
故选:D.
8.如图,著名水乡乌镇的一圆拱桥的拱顶到水面的距离CD为8m,水面宽AB为8m,则拱桥的半径OC为( )
A.4m B.5m C.6m D.8m
【分析】连接OA,设OB=OC=x,则OD=8﹣x,根据垂径定理得出BD,然后根据勾股定理得出关于x的方程,解方程即可得出答案.
【解答】解:连接BO,
由题意可得:AD=BD=4m,设⊙O的半径OC=xm,
则DO=(8﹣x)m,
由勾股定理可得:x2=(8﹣x)2+42,
解得:x=5.
故选:B.
9.如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是( )
A.2 B.2 C.2 D.4
【分析】过点O作OF⊥CD于点F,OG⊥AB于G,连接OB、OD、OE,由垂径定理得出DF=CF,AG=BG=AB=3,得出EG=AG﹣AE=2,由勾股定理得出OG==2,
证出△EOG是等腰直角三角形,得出∠OEG=45°,OE=OG=2,求出∠OEF=30°,由直角三角形的性质得出OF=OE=,由勾股定理得出DF═,即可得出答案.
【解答】解:过点O作OF⊥CD于点F,OG⊥AB于G,连接OB、OD、OE,如图所示:
则DF=CF,AG=BG=AB=3,
∴EG=AG﹣AE=2,
在Rt△BOG中,OG===2,
∴EG=OG,
∴△EOG是等腰直角三角形,
∴∠OEG=45°,OE=OG=2,
∵∠DEB=75°,
∴∠OEF=30°,
∴OF=OE=,
在Rt△ODF中,DF===,
∴CD=2DF=2;
故选:C.
10.如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB=40m,点C是的中点,点D是AB的中点,且CD=10m,则这段弯路所在圆的半径为( )
A.25m B.24m C.30m D.60m
【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.
【解答】解:∵OC⊥AB,
∴AD=DB=20m,
在Rt△AOD中,OA2=OD2+AD2,
设半径为r得:r2=(r﹣10)2+202,
解得:r=25m,
∴这段弯路的半径为25m
故选:A.
二.填空题(共5小题)
11.如图,AC是⊙O的直径,弦BD⊥AC于点E,连接BC过点O作OF⊥BC于点F,若BD=12cm,AE=4cm,则OF的长度是 cm.
【分析】连接OB,根据垂径定理求出BE,根据勾股定理求出OB,再根据勾股定理计算即可.
【解答】解:连接OB,
∵AC是⊙O的直径,弦BD⊥AC,
∴BE=BD=6cm,
在Rt△OEB中,OB2=OE2+BE2,即OB2=(OB﹣4)2+62,
解得,OB=,
则EC=AC﹣AE=9,
BC===3,
∵OF⊥BC,
∴CF=BC=,
∴OF===(cm),
故答案为.
12.某公路上有一隧道,顶部是圆弧形拱顶,圆心为O,隧道的水平宽AB为24m,AB离地面的高度AE=10 m,拱顶最高处C离地面的高度CD为18m,在拱顶的M,N处安装照明灯,且M,N离地面的高度相等都等于17m,则MN= 10 m.
【分析】根据题意和垂径定理得到CG=8m,AG=12m,CH=1m,根据勾股定理求得半径,进而利用勾股定理求得MH,即可求得MN.
【解答】解:设CD于AB交于G,与MN交于H,
∵CD=18m,AE=10m,AB=24m,HD=17m,
∴CG=8m,AG=12m,CH=1m,
设圆拱的半径为r,
在Rt△AOG中,OA2=OG2+AG2,
∴r2=(r﹣8)2+122,
解得r=13,
∴OC=13m,
∴OH=13﹣1=12m,
在Rt△MOH中,OM2=OH2+MH2,
∴132=122+MH2,
解得MH2=25,
∴MH=5m,
∴MN=10m,
故答案为10.
13.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为 2 .
【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.
【解答】解:作OH⊥CD于H,连结OC,如图,
∵OH⊥CD,
∴HC=HD,
∵AP=2,BP=6,
∴AB=8,
∴OA=4,
∴OP=OA﹣AP=2,
在Rt△OPH中,∵∠OPH=30°,
∴∠POH=60°,
∴OH=OP=1,
在Rt△OHC中,∵OC=4,OH=1,
∴CH=,
∴CD=2CH=2.
故答案为:2
14.如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为 0.5 米.
【分析】由题意知,秋千摆至最低点时,点C为弧AB的中点,由垂径定理知AB⊥OC,AD=BD=AB=1.5米.再根据勾股定理求得OD即可.
【解答】解:∵点C为弧AB的中点,O为圆心
由垂径定理知:AB⊥OC,AD=BD=AB=1.5米,
在Rt△OAD中,根据勾股定理,OD==2(米),
∴CD=OC﹣OD=2.5﹣2=0.5(米);
故答案为0.5.
15.在圆柱形油槽内装有一些油,截面如图所示,直径MN为100cm,油面宽AB为60cm,如果再注入一些油后,油面宽变为80cm,则油面上升 10cm或70cm
【分析】本题实质是求两条平行弦之间的距离.根据勾股定理求弦心距,作和或差分别求解.
【解答】解:连接OA,作OG⊥AB于G,
∵AB=6分米,
∴AG=AB=3分米,
∵油槽直径MN为10分米.
∴OA=5分米,
∴OG═4分米,即弦AB的弦心距是4分米,
同理当油面宽AB为8分米时,弦心距是3分米,
∴当油面没超过圆心O时,油上升了1分米,即10cm;
当油面超过圆心O时,油上升了7分米,即70cm.
故答案为:10cm或70cm.
三.解答题(共6小题)
16.⊙O中,直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,且∠DEB=60°,求CD的长.
【分析】作OP⊥CD于P,连接OD,根据正弦的定义求出OP,根据勾股定理求出PD,根据垂径定理计算.
【解答】解:作OP⊥CD于P,连接OD,
∴CP=PD,
∵AE=1,EB=5,
∴AB=6,
∴OE=2,
在Rt△OPE中,OP=OE?sin∠DEB=,
∴PD==,
∴CD=2PD=2(cm).
17.如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)
【分析】连接OC,求出OC和OE,根据勾股定理求出CE,根据垂径定理求出CD即可.
【解答】解:如图,连接OC,AB交CD于E,
由题意知:AB=1.6+6.4+4=12,
所以OC=OB=6,
OE=OB﹣BE=6﹣4=2,
由题意可知:AB⊥CD,
∵AB过O,
∴CD=2CE,
在Rt△OCE中,由勾股定理得:CE===4,
∴CD=2CE=8≈11.3m,
所以路面CD的宽度为11.3m.
18.如图,Rt△ABC中,∠ACB=90°,O为△ABC角平分线的交点,以OC为半径的⊙O交△ABC于D、E、F、G.
(1)求证:CD=EF;
(2)若⊙O的半径为4,AE=2,求AB的长.
【分析】(1)作OM⊥AB于M,ON⊥AC于N,OH⊥CG于G,连接OE、OD,根据角的平分线的性质得出OE=OD=OC,进而根据HL证得RT△OME≌RT△OND得出ME=ND,然后根据垂径定理即可证得结论;
(2)根据角平分线的性质,得出OM=ON=OH,进一步证得四边形ONCH是正方形,证得OM=ON=OH=CD=EF=CG,进而证得OH=CD=2,EF=CD=CG=4,AC=6,设BM=BH=x,则BC=x+2,AB=x+4,然后根据勾股定理列出方程,求得即可.
【解答】(1)证明:作OM⊥AB于M,ON⊥AC于N,OH⊥CG于G,连接OE、OD,
∵点O为△ABC的角平分线交点,
∴OM=ON,
∵OE=OD=OC,
∴RT△OME≌RT△OND(HL),
∴ME=ND,
∵EF=2ME,CD=2ND,
∴CD=EF;
(2)解:由(1)可知CD=EF=CG,
∵点O为△ABC的角平分线交点,
∴OM=ON=OH,
∵∠ACB=90°,
∴四边形ONCH是正方形,
∴OM=ON=OH=CD=EF=CG,
∵OC=4,
∴OH=OC=4,
∴EF=CD=CG=8,
易证得AM=AN=6,BM=BH,
∴AC=10,
设BM=BH=x,则BC=x+4,AB=x+6,
∵∠ACB=90°,
∴AB2=AC2+BC2,即(6+x)2=102+(4+x)2,
解得x=20,
∴BM=20,
∴AB=AM+BM=20+6=26.
19.如图,OD是⊙O的半径,AB是弦,且OD⊥AB于点C连接AO并延长交⊙O于点E,若AB=8,CD=2,求⊙O半径OA的长.
【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,在Rt△OAC中利用勾股定理求出r的值.
【解答】解:∵OD⊥弦AB,AB=8,
∴AC==4,
设⊙O的半径OA=r,
∴OC=OD﹣CD=r﹣2,
在Rt△OAC中,
r2=(r﹣2)2+42,
解得:r=5,
20.如图,已知Rt△ABC,∠BAC=90°,BC=5,AC=2,以A为圆心、AB为半径画圆,与边BC交于另一点D.
(1)求BD的长;
(2)连接AD,求∠DAC的正弦值.
【分析】(1)如图连接AD,作AH⊥BD于H.利用面积法求出AH,再利用勾股定理求出BH即可解决问题;
(2)作DM⊥AC于M.利用面积法求出DM即可解决问题;
【解答】解:(1)如图连接AD,作AH⊥BD于H.
∵Rt△ABC,∠BAC=90°,BC=5,AC=2,
∴AB==,
∵?AB?AC=?BC?AH,
∴AH==2,
∴BH==1,
∵AB=AD,AH⊥BD,
∴BH=HD=1,
∴BD=2.
(2)作DM⊥AC于M.
∵S△ACB=S△ABD+S△ACD,
∴××2=×2×2+×2×DM,
∴DM=,
∴sin∠DAC===.
21.如图,一圆弧形桥拱的圆心为E,拱桥的水面跨度AB=80米,桥拱到水面的最大高度DF为20米.求:
(1)桥拱的半径;
(2)现水面上涨后水面跨度为60米,求水面上涨的高度为 10 米.
【分析】(1)根据垂径定理和勾股定理求解;
(2)由垂径定理求出MH,由勾股定理求出EH,得出HF即可.
【解答】解:(1)如图,设点E是拱桥所在的圆的圆心,作EF⊥AB于F,延长EF交圆于点D,
则由垂径定理知,点F是AB的中点,AF=FB=AB=40,EF=ED﹣FD=AE﹣DF,
由勾股定理知,AE2=AF2+EF2=AF2+(AE﹣DF)2,
设圆的半径是r,
则:r2=402+(r﹣20)2,
解得:r=50;
即桥拱的半径为50米;
(2)设水面上涨后水面跨度MN为60米,MN交ED于H,连接EM,如图2所示
则MH=NH=MN=30,
∴EH==40(米),
∵EF=50﹣20=30(米),
∴HF=EH﹣EF=10(米);
故答案为:10.
第1页(共1页)