2020中考数学重难点专练06 二次函数综合题
【命题趋势】
首先告诉各位同学二次函数是中考必考内容之一,往往也是中考数学的压轴大戏.涉及题目数量一般2-3题,其中有一道大题.所占分值大约20-25分.二次函数在中考数学中常常作为压轴题,而在压轴题中,一般都设计成三至四小问,其中第一、二小问比较简单,最后一至两问难度很大.二次函数在考查时,往往会与一次函数、反比例函数、圆、三角形、四边形相结合,综合性很强,技巧性也很强,同时计算量一般很大,加上二次函数本身就比较抽象,这就导致了题目得分率非常低.其实我们只要能熟练掌握二次函数的基本知识,同时掌握一些常见的题型,提高对于二次函数的得分,不是什么难事,多多练习,多多总结.
【满分技巧】
一.通过思维导图整体把握二次函数所有考点
二.熟练掌握各种常见有关二次函数的题型和应对策略
1.线段最值(周长)问题——斜化直策略
2.三角形或多边形面积问题——铅垂高、水平宽策略
3.线段和最小值问题——胡不归+阿氏圆策略问题
4.线段差——三角形三边关系或函数
5.相似三角形存在性问题——根据相等角分类讨论
6.平行四边形存在性问题——中点公式+平移法
【限时检测】(建议用时:120分钟)
1. (2019 山东省淄博市)如图,顶点为的抛物线与轴交于,两点,与轴交于点.
(1)求这条抛物线对应的函数表达式;
(2)问在轴上是否存在一点,使得为直角三角形?若存在,求出点的坐标;若不存在,说明理由.
(3)若在第一象限的抛物线下方有一动点,满足,过作轴于点,设的内心为,试求的最小值.
2. (2019 四川省巴中市)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.
①求抛物线的解析式.
②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.
③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.
3. (2019 四川省成都市)如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.
(1)求抛物线的函数表达式;
(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;
(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.
4. (2019 天津市)已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.
(Ⅰ)当b=2时,求抛物线的顶点坐标;
(Ⅱ)点D(b,yD)在抛物线上,当AM=AD,m=5时,求b的值;
(Ⅲ)点Q(b+,yQ)在抛物线上,当AM+2QM的最小值为时,求b的值.
5. (2019 新疆建设兵团)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,4)三点.
(1)求抛物线的解析式及顶点D的坐标;
(2)将(1)中的抛物线向下平移个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线.若新抛物线的顶点D′在△ABC内,求h的取值范围;
(3)点P为线段BC上一动点(点P不与点B,C重合),过点P作x轴的垂线交(1)中的抛物线于点Q,当△PQC与△ABC相似时,求△PQC的面积.
6. (2019 浙江省湖州市)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=,D是BC的中点.
(1)求OC的长和点D的坐标;
(2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P,D,B三点的抛物线交x轴的正半轴于点E,连结DE交AB于点F.
①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;
②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.
7. (2019 广西百色市)已知抛物线和直线都经过点,点为坐标原点,点为抛物线上的动点,直线与轴、轴分别交于、两点.
(1)求、的值;
(2)当是以为底边的等腰三角形时,求点的坐标;
(3)满足(2)的条件时,求的值.
8. (2019 广西防城港市)如果抛物线的顶点在拋物线上,抛物线的顶点也在拋物线上时,那么我们称抛物线与 “互为关联”的抛物线.如图1,已知抛物线与是“互为关联”的拋物线,点,分别是抛物线,的顶点,抛物线经过点.
(1)直接写出,的坐标和抛物线的解析式;
(2)抛物线上是否存在点,使得是直角三角形?如果存在,请求出点的坐标;如果不存在,请说明理由;
(3)如图2,点在抛物线上,点,分别是抛物线,上的动点,且点,的横坐标相同,记面积为(当点与点,重合时,的面积为(当点与点,重合时,,令,观察图象,当时,写出的取值范围,并求出在此范围内的最大值.
9. (2019 四川省广元市)如图,直线y=﹣x+4与x轴,y轴分别交于A,B两点,过A,B两点的抛物线y=ax2+bx+c与x轴交于点C(﹣1,0).
(1)求抛物线的解析式;
(2)连接BC,若点E是线段AC上的一个动点(不与A,C重合),过点E作EF∥BC,交AB于点F,当△BEF的面积是时,求点E的坐标;
(3)在(2)的结论下,将△BEF绕点F旋转180°得△B′E′F,试判断点E′是否在抛物线上,并说明理由.
10. (2019 四川省遂宁市)如图,顶点为P(3,3)的二次函数图象与x轴交于点A(6,0),点B在该图象上,OB交其对称轴l于点M,点M、N关于点P对称,连接BN、ON.
(1)求该二次函数的关系式.
(2)若点B在对称轴l右侧的二次函数图象上运动,请解答下列问题:
①连接OP,当OP=MN时,请判断△NOB的形状,并求出此时点B的坐标.
②求证:∠BNM=∠ONM.
2020中考数学重难点专练06 二次函数综合题
【命题趋势】
首先告诉各位同学二次函数是中考必考内容之一,往往也是中考数学的压轴大戏.涉及题目数量一般2-3题,其中有一道大题.所占分值大约20-25分.二次函数在中考数学中常常作为压轴题,而在压轴题中,一般都设计成三至四小问,其中第一、二小问比较简单,最后一至两问难度很大.二次函数在考查时,往往会与一次函数、反比例函数、圆、三角形、四边形相结合,综合性很强,技巧性也很强,同时计算量一般很大,加上二次函数本身就比较抽象,这就导致了题目得分率非常低.其实我们只要能熟练掌握二次函数的基本知识,同时掌握一些常见的题型,提高对于二次函数的得分,不是什么难事,多多练习,多多总结.
【满分技巧】
一.通过思维导图整体把握二次函数所有考点
二.熟练掌握各种常见有关二次函数的题型和应对策略
1.线段最值(周长)问题——斜化直策略
2.三角形或多边形面积问题——铅垂高、水平宽策略
3.线段和最小值问题——胡不归+阿氏圆策略问题
4.线段差——三角形三边关系或函数
5.相似三角形存在性问题——根据相等角分类讨论
6.平行四边形存在性问题——中点公式+平移法
【限时检测】(建议用时:120分钟)
1. (2019 山东省淄博市)如图,顶点为的抛物线与轴交于,两点,与轴交于点.
(1)求这条抛物线对应的函数表达式;
(2)问在轴上是否存在一点,使得为直角三角形?若存在,求出点的坐标;若不存在,说明理由.
(3)若在第一象限的抛物线下方有一动点,满足,过作轴于点,设的内心为,试求的最小值.
【解析】(1)抛物线过点,
解得:
这条抛物线对应的函数表达式为
(2)在轴上存在点,使得为直角三角形.
顶点
设点坐标为
,
①若,则
解得:
②若,则
解得:,
或
③若,则
解得:
综上所述,点坐标为或或或时,为直角三角形.
(3)如图,过点作轴于点,于点,于点
轴于点
四边形是矩形
点为的内心
,,,
矩形是正方形
设点坐标为
,
化简得:
配方得:
点与定点,的距离为
点在以点,为圆心,半径为的圆在第一象限的弧上运动
当点在线段上时,最小
最小值为.
2. (2019 四川省巴中市)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.
①求抛物线的解析式.
②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.
③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.
【解析】①∵点B、C在直线为y=x+n上,
∴B(﹣n,0)、C(0,n),
∵点A(1,0)在抛物线上,
∴,
∴a=﹣1,b=6,
∴抛物线解析式:y=﹣x2+6x﹣5;
②由题意,得,
PB=4﹣t,BE=2t,
由①知,∠OBC=45°,
∴点P到BC的高h为BPsin45°=(4﹣t),
∴S△PBE=BE?h==,
当t=2时,△PBE的面积最大,最大值为2;
③由①知,BC所在直线为:y=x﹣5,
∴点A到直线BC的距离d=2,
过点N作x轴的垂线交直线BC于点P,交x轴于点H.
设N(m,﹣m2+6m﹣5),则H(m,0)、P(m,m﹣5),
易证△PQN为等腰直角三角形,即NQ=PQ=2,
∴PN=4,
Ⅰ.NH+HP=4,
∴﹣m2+6m﹣5﹣(m﹣5)=4
解得m1=1,m2=4,
∵点A、M、N、Q为顶点的四边形是平行四边形,
∴m=4;
Ⅱ.NH+HP=4,
∴m﹣5﹣(﹣m2+6m﹣5)=4
解得m1=,m2=,
∵点A、M、N、Q为顶点的四边形是平行四边形,
m>5,
∴m=,
Ⅲ.NH﹣HP=4,
∴﹣(﹣m2+6m﹣5)﹣[﹣(m﹣5)]=4,
解得m1=,m2=,
∵点A、M、N、Q为顶点的四边形是平行四边形,
m<0,
∴m=,
综上所述,若点A、M、N、Q为顶点的四边形是平行四边形,点N的横坐标为:4或或.
3. (2019 四川省成都市)如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.
(1)求抛物线的函数表达式;
(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;
(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.
【解析】(1)由题意得:
解得,
∴抛物线的函数表达式为y=x2﹣2x﹣3.
(2)∵抛物线与x轴交于B(﹣1,0),C(3,0),
∴BC=4,抛物线的对称轴为直线x=1,
如图,设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),BH=2,
由翻折得C′B=CB=4,
在Rt△BHC′中,由勾股定理,得C′H===2,
∴点C′的坐标为(1,2),tan,
∴∠C′BH=60°,
由翻折得∠DBH=∠C′BH=30°,
在Rt△BHD中,DH=BH?tan∠DBH=2?tan30°=,
∴点D的坐标为(1,).
(3)取(2)中的点C′,D,连接CC′,
∵BC′=BC,∠C′BC=60°,
∴△C′CB为等边三角形.分类讨论如下:
①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P.
∵△PCQ,△C′CB为等边三角形,
∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°,
∴∠BCQ=∠C′CP,
∴△BCQ≌△C′CP(SAS),
∴BQ=C′P.
∵点Q在抛物线的对称轴上,
∴BQ=CQ,
∴C′P=CQ=CP,
又∵BC′=BC,
∴BP垂直平分CC′,
由翻折可知BD垂直平分CC′,
∴点D在直线BP上,
设直线BP的函数表达式为y=kx+b,
则,解得,
∴直线BP的函数表达式为y=.
②当点P在x轴的下方时,点Q在x轴下方.
∵△PCQ,△C′CB为等边三角形,
∴CP=CQ,BC=CC′,∠CC′B=∠QCP=∠C′CB=60°.
∴∠BCP=∠C′CQ,
∴△BCP≌△C′CQ(SAS),
∴∠CBP=∠CC′Q,
∵BC′=CC′,C′H⊥BC,
∴.
∴∠CBP=30°,
设BP与y轴相交于点E,
在Rt△BOE中,OE=OB?tan∠CBP=OB?tan30°=1×,
∴点E的坐标为(0,﹣).
设直线BP的函数表达式为y=mx+n,
则,解得,
∴直线BP的函数表达式为y=﹣.
综上所述,直线BP的函数表达式为或.
4. (2019 天津市)已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.
(Ⅰ)当b=2时,求抛物线的顶点坐标;
(Ⅱ)点D(b,yD)在抛物线上,当AM=AD,m=5时,求b的值;
(Ⅲ)点Q(b+,yQ)在抛物线上,当AM+2QM的最小值为时,求b的值.
【解析】(Ⅰ)∵抛物线y=x2﹣bx+c经过点A(﹣1,0),
∴1+b+c=0,
即c=﹣b﹣1,
当b=2时,
y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴抛物线的顶点坐标为(1,﹣4);
(Ⅱ)由(Ⅰ)知,抛物线的解析式为y=x2﹣bx﹣b﹣1,
∵点D(b,yD)在抛物线y=x2﹣bx﹣b﹣1上,
∴yD=b2﹣b?b﹣b﹣1=﹣b﹣1,
由b>0,得b>>0,﹣b﹣1<0,
∴点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,
如图1,过点D作DE⊥x轴,垂足为E,则点E(b,0),
∴AE=b+1,DE=b+1,得AE=DE,
∴在Rt△ADE中,∠ADE=∠DAE=45°,
∴AD=AE,
由已知AM=AD,m=5,
∴5﹣(﹣1)=(b+1),
∴b=3﹣1;
(Ⅲ)∵点Q(b+,yQ)在抛物线y=x2﹣bx﹣b﹣1上,
∴yQ=(b+)2﹣b(b+)﹣b﹣1=﹣﹣,
可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,
∵AM+2QM=2(AM+QM),
∴可取点N(0,1),
如图2,过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,
由∠GAM=45°,得AM=GM,
则此时点M满足题意,
过点Q作QH⊥x轴于点H,则点H(b+,0),
在Rt△MQH中,可知∠QMH=∠MQH=45°,
∴QH=MH,QM=MH,
∵点M(m,0),
∴0﹣(﹣﹣)=(b+)﹣m,
解得,m=﹣,
∵AM+2QM=,
∴[(﹣)﹣(﹣1)]+2[(b+)﹣(﹣)]=,
∴b=4.
5. (2019 新疆建设兵团)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,4)三点.
(1)求抛物线的解析式及顶点D的坐标;
(2)将(1)中的抛物线向下平移个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线.若新抛物线的顶点D′在△ABC内,求h的取值范围;
(3)点P为线段BC上一动点(点P不与点B,C重合),过点P作x轴的垂线交(1)中的抛物线于点Q,当△PQC与△ABC相似时,求△PQC的面积.
【解析】(1)函数表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),
即﹣4a=4,解得:a=﹣1,
故抛物线的表达式为:y=﹣x2+3x+4,
函数顶点D(,);
(2)物线向下平移个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线的顶点D′(﹣h,1),
将点AC的坐标代入一次函数表达式并解得:
直线AC的表达式为:y=4x+4,
将点D′坐标代入直线AC的表达式得:1=4(﹣h)+4,
解得:h=,
故:0<h;
(3)过点P作y轴的平行线交抛物线和x轴于点Q、H
∵OB=OC=4,∴∠PBA=∠OCB=45°=∠QPC,
直线BC的表达式为:y=﹣x+4,
则AB=5,BC=4,AC=,
S△ABC=×5×4=10,
设点Q(m,﹣m2+3m+4),点P(m,﹣m+4),
CP=m,PQ=﹣m2+3m+4+m﹣4=﹣m2+4m,
①当△CPQ∽△CBA,
,即,
解得:m=,
相似比为:,
②当△CPQ∽△ABC,
同理可得:相似比为:,
利用面积比等于相似比的平方可得:
S△PQC=10×()2=或S△PQC=10×()2=.
6. (2019 浙江省湖州市)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=,D是BC的中点.
(1)求OC的长和点D的坐标;
(2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P,D,B三点的抛物线交x轴的正半轴于点E,连结DE交AB于点F.
①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;
②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.
【解析】(1)∵OA=3,tan∠OAC==,
∴OC=,
∵四边形OABC是矩形,
∴BC=OA=3,
∵D是BC的中点,
∴CD=BC=,
∴D(,);
(2)①∵tan∠OAC=,
∴∠OAC=30°,
∴∠ACB=∠OAC=30°,
设将△DBF沿DE所在的直线翻折后,点B恰好落在AC上的B'处,
则DB'=DB=DC,∠BDF=∠B'DF,
∴∠DB'C=∠ACB=30°
∴∠BDB'=60°,
∴∠BDF=∠B'DF=30°,
∵∠B=90°,
∴BF=BD?tan30°=,
∵AB=,
∴AF=BF=,
∵∠BFD=∠AEF,
∴∠B=∠FAE=90°,
∴△BFD≌△AFE(ASA),
∴AE=BD=,
∴OE=OA+AE=,
∴点E的坐标(,0);
②动点P在点O时,
∵抛物线过点P(0,0)、D(,)、B(3,)
求得此时抛物线解析式为y=﹣x2+x,
∴E(,0),
∴直线DE:y=﹣x+,
∴F1(3,);
当动点P从点O运动到点M时,
∵抛物线过点P(0,)、D(,)、B(3,)
求得此时抛物线解析式为y=﹣x2+x+,
∴E(6,0),
∴直线DE:y=﹣x+,
∴F2(3,);
∴点F运动路径的长为F1F2==,
∵△DFG为等边三角形,
∴G运动路径的长为.
7. (2019 广西百色市)已知抛物线和直线都经过点,点为坐标原点,点为抛物线上的动点,直线与轴、轴分别交于、两点.
(1)求、的值;
(2)当是以为底边的等腰三角形时,求点的坐标;
(3)满足(2)的条件时,求的值.
【解析】(1)将代入,得:,
;
将代入,得:,
.
(2)由(1)得:抛物线的解析式为,直线的解析式为.
当时,,
解得:,
点的坐标为,.
设点的坐标为,则,.
是以为底边的等腰三角形,
,即,
整理,得:,
解得:,,
点的坐标为或.
(3)过点作轴,垂足为点,如图所示.
当点的坐标为时,,,
;
当点的坐标为时,,,
.
满足(2)的条件时,的值的值为或.
8. (2019 广西防城港市)如果抛物线的顶点在拋物线上,抛物线的顶点也在拋物线上时,那么我们称抛物线与 “互为关联”的抛物线.如图1,已知抛物线与是“互为关联”的拋物线,点,分别是抛物线,的顶点,抛物线经过点.
(1)直接写出,的坐标和抛物线的解析式;
(2)抛物线上是否存在点,使得是直角三角形?如果存在,请求出点的坐标;如果不存在,请说明理由;
(3)如图2,点在抛物线上,点,分别是抛物线,上的动点,且点,的横坐标相同,记面积为(当点与点,重合时,的面积为(当点与点,重合时,,令,观察图象,当时,写出的取值范围,并求出在此范围内的最大值.
【解析】由抛物线可得,
将,代入
得,
解得,
,
;
(2)易得直线的解析式:,
①若为直角顶点,,,
,
直线解析式为
联立,
解得,或,,
;
②若为直角顶点,,
同理得解析式:,
联立,
解得,或,,
;
③若为直角顶点,设
由得,
即,
解得或(不符合题意舍去),
点的坐标或;
(3),
,
设,,且,
易求直线的解析式:,
过作轴的平行线交于,
则,
设交于点,易知,
,
当时,
的最大值为16.
9. (2019 四川省广元市)如图,直线y=﹣x+4与x轴,y轴分别交于A,B两点,过A,B两点的抛物线y=ax2+bx+c与x轴交于点C(﹣1,0).
(1)求抛物线的解析式;
(2)连接BC,若点E是线段AC上的一个动点(不与A,C重合),过点E作EF∥BC,交AB于点F,当△BEF的面积是时,求点E的坐标;
(3)在(2)的结论下,将△BEF绕点F旋转180°得△B′E′F,试判断点E′是否在抛物线上,并说明理由.
【解析】(1)y=﹣x+4…①,
令x=0,y=4,令y=0,则x=4,
故点A、B的坐标分别为(4,0)、(0,4),
抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),
即﹣4a=4,解得:a=﹣1,
故抛物线的表达式为:y=﹣x2+3x+4…②;
(2)设点E(m,0),
直线BC表达式中的k值为4,EF∥BC,
则直线EF的表达式为:y=4x+n,
将点E坐标代入上式并解得:直线EF的表达式为:y=4x﹣4m…③,
联立①③并解得:x=(m+1),
则点F(,),
S△BEF=S△OAB﹣S△OBE﹣S△AEF=×4×4﹣×4m﹣(4﹣m)×=,解得:m=,
故点E(,0)、点E(2,2);
(3)△BEF绕点F旋转180°得△B′E′F,则点E′(,4),
当x=时,y=﹣x2+3x+4=﹣()2+3×+4≠4,
故点E′不在抛物线上.
10. (2019 四川省遂宁市)如图,顶点为P(3,3)的二次函数图象与x轴交于点A(6,0),点B在该图象上,OB交其对称轴l于点M,点M、N关于点P对称,连接BN、ON.
(1)求该二次函数的关系式.
(2)若点B在对称轴l右侧的二次函数图象上运动,请解答下列问题:
①连接OP,当OP=MN时,请判断△NOB的形状,并求出此时点B的坐标.
②求证:∠BNM=∠ONM.
【解析】(1)∵二次函数顶点为P(3,3)
∴设顶点式y=a(x﹣3)2+3
∵二次函数图象过点A(6,0)
∴(6﹣3)2a+3=0,解得:a=﹣
∴二次函数的关系式为y=﹣(x﹣3)2+3=﹣x2+2x
(2)设B(b,﹣b2+2b)(b>3)
∴直线OB解析式为:y=(﹣b+2)x
∵OB交对称轴l于点M
∴当xM=3时,yM=(﹣b+2)×3=﹣b+6,∴M(3,﹣b+6)
∵点M、N关于点P对称,∴NP=MP=3﹣(﹣b+6)=b﹣3,
∴yN=3+b﹣3=b,即N(3,b)
①∵OP=MN,∴OP=MP
∴=b﹣3,解得:b=3+3
∴﹣b2+2b=﹣×(3+3)2+2×(3+3)=﹣3
∴B(3+3,﹣3),N(3,3+3)
∴OB2=(3+3)2+(﹣3)2=36+18,ON2=32+(3+3)2=36+18,BN2=(3+3﹣3)2+(﹣3﹣3﹣3)2=72+36
∴OB=ON,OB2+ON2=BN2
∴△NOB是等腰直角三角形,此时点B坐标为(3+3,﹣3).
②证明:如图,设直线BN与x轴交于点D,
∵B(b,﹣b2+2b)、N(3,b)
设直线BN解析式为y=kx+d
∴ 解得:
∴直线BN:y=﹣bx+2b
当y=0时,﹣bx+2b=0,解得:x=6,∴D(6,0)
∵C(3,0),NC⊥x轴,∴NC垂直平分OD
∴ND=NO
∴∠BNM=∠ONM