中小学教育资源及组卷应用平台
人教版2019-2020学年七年级数学下学期5.1相交线
(时间60分钟 总分100分)
一、选择题(每小题5分,共30分)
1.下列各图中,∠1与∠2互为邻补角的是( )
A. B. C. D.
2.如图,,直线BD经过点0,且,则∠COD的度数为( )
A.70° B.110° C.140° D.160°
3.点P为直线l外一点,点A,B,C为直线l上三点,PA=2cm,PB=3cm,PC=4cm,则点P到直线l的距离( )
A.等于2cm B.小于2cm C.大于2cm D.不大于2cm
4.如图,三条直线相交于一点,则∠1+∠2+∠3等于( )
A. B. C. D.
5.如图,,下列结论中,正确的结论有( )
①线段CD的长度是点C到AB的距离;②线段AC是点A到BC的距离;③AB>AC>CD;④线段BC是点B到AC的距离;⑤CD
A.2个 B.3个 C.4个 D.5个
6.如图,给出下列四个结论:
①∠2与∠6是内错角;②∠3与∠4是内错角;
③∠5与∠6是同旁内角;④∠1与∠4是同旁内角.
其中正确的是( )
A.①② B.②③④ C.①②④ D.①②③④
二、填空题(每小题5分,共20分)
7.如图所示,在直角三角形ABC中,,过点A作,垂足为D,已知AB=6cm,AD=5cm.
(1)点B到AC的距离为______,点A到BC的距离为______;
(2)CD______AC(填“>“<”或“=”),依据是.
8.如图,填空:
(1)∠1和∠B是直线______,______被直线______所截形成的角;
(2)∠2和∠A是直线______,______被直线______所截形成的角;
(3)∠B和∠ECB是直线______,______被直线______所截形成的角.
9.如图,,若∠AOD=150°,则∠BOC的度数是_______
10.如图(1),两条直线相交所组成的角中,互为对顶角的角有两对:∠AOD和∠COB,
∠AOC和∠BOD.
(1)如图(2),3条直线相交于一点所组成的角中,互为对顶角的角有_____对;
(2)如图(3),4条直线相交于一点所组成的角中,互为对顶角的角有_____对;
(3)n条直线相交于一点所组成的角中,互为对顶角的角有_____对.
三、解答题(共5题,11、12、13、14、15、16每小题7分,17小题8分,共50分)
11.如图,分别过点P作线段MN的垂线.
12.如图所示,直线AB,CD相交于点O,∠COE=145°,OD平分∠BOE,求∠AOC的度数。
13.如图,已知直线AB,CD相交于点O,∠AOC=50°,OE平分∠DOB,求∠COE的度数.
14.如图,直线AB,CD,EF相交于点O,∠A0E=40°,∠BOC=2∠A0C,求∠DOF的度数.
15.如图,已知直线AB,CD相交点O,∠AOC=50°,OE平分∠DOB,求∠COE的度数
16.如图,O为直线AB上一点,∠AOC=3∠BOC,OC是∠A0D的平分线
(1)求∠COD的度数;
(2)试判断OD与AB的位置关系.
17.如图,直线AB,CD相交于点O,OE是∠COB的平分线,FOLOE于点0,已知
∠AOD=70°.
(1)求∠BOE的度数;
(2)OF平分∠AOC吗?为什么?
答案
1.【解析】根据邻补角的定义可知,只有选项D中的∠1与∠2互为邻补角.
答案:D
2.【解析】因为,所以∠AOC=90°.因为∠1=20°,所以∠COB=70°,所以∠COD=180°-70°=110°.
答案:B
3.【解析】当时,点P到直线l的距离为PA=2cm;当PA与l不垂直时,点P到直线l的距离小于PA.综上可知,点P到直线l的距离不大于2cm.
答案:D
4.【解析】因为∠2的对顶角与∠1,∠3的和正好等于180°,根据对顶角相等,得∠1+∠2+∠3=180°.
答案:C
5.【解析】线段CD的长度是点C到AB的距离,故①正确;线段AC的长度是点A到BC的距离,故②错误;AB>AC>CD,故③正确;线段BC的长度是点B到AC的距离,故
④错误;CD答案:B
6.【解析】∠2与∠6是直线DF,DC被直线AB所截形成的内错角,故①正确;∠3与∠4是直线AB,AC被直线DF所截形成的内错角,故②正确;根据同旁内角的定义可知∠5与∠6不是同旁内角,故③不正确;∠1与∠4是直线AB,AC被直线DF所截形成的同旁内角,故④正确。故选C.
答案:C
7.【解析】(1)点B到AC的距离为线段AB的长度,为6cm;点A到BC的距离为线段AD的长度,为5cm.
(2)CD是点C到AD的垂线段,根据垂线段最短,可知CD8.【解析】(1)∠1和∠B都有一条边落在直线BD上,则BD为截线,另两条边所在的直线EC和AB是被截直线,由同位角的定义可知∠1和∠B是同位角.
(2)∠2和∠A都有一条边落在直线AC上,则AC为截线,另两条边所在的直线EC和AB是被截直线,由内错角的定义可知∠2和∠A是内错角.
(3)∠B和∠ECB都有一条边落在直线BD上,则BD为截线,另两条边所在的直线AB和EC是被截直线,由同旁内角的定义可知∠B和∠ECB是同旁内角
9.【解析】因为,所以∠AOC=∠DOB=90°,所以∠BOC=∠AOC+∠DOB-∠AOD=180°-150°=30°.
10.【解析】3条直线两两配对,形成了3个“又”,每个“叉”中有2对对顶角,所以互为对顶角的角有6对.
4条直线两两配对,形成了6个“叉”,所以互为对顶角的角有12对
n条直线两两配对,共有个“又”,所以互为对顶角的角有n(n-1)对
11.【解析】
12.【解析】解析,因为∠COE=145°,所以∠DOE=180°-∠COE=180°-145°=35°.
因为OD平分∠BOE,所以∠BOD=∠DOE=35°,所以∠AOC=∠BOD=35°.
13.【解析】因为∠AOC=50°,所以∠COB=180°-∠AOC=130°,∠DOB=∠AOC=50°.
因为OE平分∠DOB,所以∠BOE=∠B0D=25°,所以∠COE=∠COB+∠B0E=130°+250=155°.
14.【解析】设∠AOC=x,则∠BOC=2x.由邻补角的性质可得x+2x=180°,解得x=60°,即∠A0C=60°,所以∠EOC=∠A0C-∠A0E=60°-40°=20°,由对顶角相等得∠DOF=∠EOC=20°.
15.【解析】因为∠AOC=50°,所以∠COB=180°-∠AOC=130°,∠DOB=∠AOC=50°.
因为OE平分∠DOB,所以∠BOE=-∠BOD=25°,所以∠COE=∠COB+∠BOE=130°+25°=155°.
16.【解析】(1)设∠AOC=x°,因为OC是∠AOD的平分线,所以∠COD=∠AOC=x°.
因为∠AOC=-∠B0C,所以∠BOC=3∠AOC=3x°.因为∠A0C+∠BOC=180°,所以x+3x=180,所以x=45,所以∠COD=x°=45°.
(2)因为∠A0D=∠AOC+∠COD=90°,所以.
17.【解析】(1)根据对顶角相等,得∠BOC=∠AOD=70°.因为OE是∠BOC的平分线,所以∠B0E=-∠BOC=35°
(2)OF平分∠AOC.理由如下:因为∠AOD=70°,所以∠AOC=180°-∠AOD=180°-70°=110°,又∠FOC=∠FOE-∠COE=90°-350=55°,所以∠FOC=∠F0A=∠AOC,所以OF平分∠AOC.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)