课题:10.3 频率与概率
学习目标:
通过对具体实例的学习,理解频率与概率之间的关系,并学会利用频率估计概率,培养学生观察分析问题的能力,类比与归纳的思想
重点难点:频率与概率的关系
新课学习:
探究:
重复做同时抛掷两枚质地均匀的硬币的试验,设事件A=“一个正面朝上,一个反面朝上”,统计A出现的次数并计算频率,再与其概率进行比较.你发现了什么规律?
大量试验表明,在任何确定次数的随机试验中,一个随机事件A发生的频率具有随机性.一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率 fn(A)会逐渐稳定于事件A发生的概率P(A).我们称频率的这个性质为频率的稳定性.因此,我们可以用频率fn(A)估计概率P(A).
思考:
用频率估计概率,需要做大量的重复试验.有没有其他方法可以替代试验呢?
我们知道,利用计算器或计算机软件可以产生随机数. 实际上,我们也可以根据不同的随机试验构建相应的随机数模拟试验,这样就可以快速地进行大量重复试验了.
典型例题:
例1、新生婴儿性别比是每100名女婴对应的男婴数.通过抽样调查得知,我国2014年、2015年出生的婴儿性别比分别为116和114.
(1)分别估计我国2014年和2015年男婴的出生率(新生儿中男婴的比率,精确到0. 001);
(2)根据估计结果,你认为“生男孩和生女孩是等可能的”这个判断可靠吗?
例2、一个游戏包含两个随机事件A和B ,规定事件A发生则甲获胜,事件B发生则乙获胜.判断游戏是否公平的标准是事件A和B发生的概率是否相等.在游戏过程中甲发现:玩了10次时,双方各胜5次;但玩到1000次时,自己才胜300次,而乙却胜了700次.据此,甲认为游戏不公平,但乙认为游戏是公平的.你更支持谁的结论?为什么?
针对练习:
1、判断下列说法是否正确.
(1)抛掷一枚硬币正面朝上的概率为0.5,则抛掷两次硬币,一定是一次正面朝上,一次反面朝上;
(2)抛掷一枚质地均匀的硬币10次,结果是4次正面朝上,所以事件“正面朝上”的概率为0.4;
(3)当试验次数很大时,随机事件发生的频率接近其概率:
(4)在一次试验中,随机事件可能发生也可能不发生,所以事件发生和不发生的概率各是0. 5.
2、用掷两枚硬币做胜负游戏,规定:两枚硬币同时出现正面或同时出现反面算甲胜,一个正面、一个反面算乙胜.这个游戏公平吗?
3、在一个试验中,把一种血清注射到500只豚鼠体内.被注射前,这些豚鼠中150只有圆形细胞,250只有椭圆形细胞,100只有不规则形状细胞;被注射后,没有一个具有圆形细胞的豚鼠被感染,50个具有椎圆形细胞的豚鼠被感染,具有不规则形状细胞的豚鼠全部被感染.根据试验结果,估计具有下列类型的细胞的豚鼠被这种血清感染的概率:
(1)圆形细胞;
(2)椭圆形细胞;
(3)不规则形状细胞.
4、用木块制作的一个四面体,四个面上分别标记1, 2, 3, 4.重复抛掷这个四面体100次,记录每个面落在桌面上的次数(如下表).如果再抛掷一次,请估计标记3的面落在桌面上的概率.
四面体的面 1 2 3 4
频数 22 18 21 39