名称 | 选修2-3 2.3离散型随机变量的均值与方差及正态分布 专项训练测试题(原卷版+解析版) | | |
格式 | zip | ||
文件大小 | 493.0KB | ||
资源类型 | 试卷 | ||
版本资源 | 人教新课标A版 | ||
科目 | 数学 | ||
更新时间 | 2020-03-01 13:55:18 |
A.0.7 B.0.6 C.0.4 D.0.3 A.0.7 B.0.6 C.0.4 D.0.3 0.5,∴p=0.6,故选B.
5.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ),N(μ2,σ),其正态分布密度曲线如图所示,则下列说法错误的是
A.甲类水果的平均质量为0.4 kg
B.甲类水果的质量分布比乙类水果的质量分布更集中于平均值左右
C.甲类水果的平均质量比乙类水果的平均质量小
D.σ2=1.99
填空题
6.已知随机变量X~N(1,σ2),若P(X>0)=0.8,则P(X≥2)=________.
7.一射击测试每人射击三次,每击中目标一次记10分,没有击中记0分.某人每次击中目标的概率为,则此人得分的数学期望为________;方差为________.
解答题
8.某校高三年级有1 000人,某次数学考试不同成绩段的人数ξ~N(127,72).
(1)求该校此次数学考试平均成绩;
(2)计算得分超过141的人数;
(3)甲同学每次数学考试进入年级前100名的概率是,若本学期有4次考试,X表示进入前100名的次数,写出X的分布列,并求期望与方差.
(注:若X~N(μ,σ2),则P(μ-σ
9.某公司新上一条生产线,为保证新的生产线正常工作,需对该生产线进行检测.现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数μ=14,标准差σ=2,绘制如图所示的频率分布直方图.以频率值作为概率估计值.
(1)从该生产线加工的产品中任意抽取一件,记其数据为X,依据以下不等式评判(P表示对应事件的概率):
①P(μ-σ
(2)将数据不在(μ-2σ,μ+2σ)内的产品视为次品,从该生产线加工的产品中任意抽取2件,次品数记为Y,求Y的分布列与数学期望E(Y).
10.电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类型 第一类 第二类 第三类 第四类 第五类 第六类
电影部数 140 50 300 200 800 510
好评率 0.4 0.2 0.15 0.25 0.2 0.1
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
假设所有电影是否获得好评相互独立.
(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;
(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk=1”表示第k类电影得到人们喜欢,“ξk=0”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差D(ξ1),D(ξ2),D(ξ3),D(ξ4),D(ξ5),D(ξ6)的大小关系.
11.某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择.
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为.第一次抽奖,若未中奖,则抽奖结束;若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖.规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,则获得1 000元;若未中奖,则所获得奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为,每次中奖均可获得奖金400元.
(1)求某员工选择方案甲进行抽奖所获奖金X(元)的分布列;
(2)试比较某员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算?
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
中小学教育资源及组卷应用平台
选修2-3 离散型随机变量的均值与方差及正态分布
专项训练测试题解析
一、选择题
1.已知ξ~B,并且η=2ξ+3,则方差D(η)=
A. B. C. D.
解析 由题意知,D(ξ)=4××=,∵η=2ξ+3,∴D(η)=4D(ξ)=4×=.
答案 A
2.已知袋中有3个白球,2个红球,现从中随机取出3个球,其中取出1个白球计1分,取出1个红球计2分,记X为取出3个球的总分值,则E(X)=
A. B. C.4 D.
解析 由题意知,X的所有可能取值为3,4,5,且P(X=3)=eq \f(C,C)=,P(X=4)=eq \f(C·C,C)=,P(X=5)=eq \f(C·C,C)=,所以E(X)=3×+4×+5×=.
答案 B
3.若随机变量ξ的分布列如表所示,E(ξ)=1.6,则a-b=
ξ 0 1 2 3
P 0.1 a b 0.1
A.0.2 B.-0.2 C.0.8 D.-0.8
解析 易知a,b∈[0,1],由0.1+a+b+0.1=1,得a+b=0.8,由E(ξ)=0×0.1+1×a+2×b+3×0.1=1.6,得a+2b=1.3,所以a=0.3,b=0.5,则a-b=-0.2.
答案 B
4.(2018·全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,D(X)=2.4,P(X=4)
解析 由题知X~B(10,p),则D(X)=10×p×(1-p)=2.4,解得p=0.4或0.6.又∵P(X=4)
答案 B
5.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ),N(μ2,σ),其正态分布密度曲线如图所示,则下列说法错误的是
A.甲类水果的平均质量为0.4 kg
B.甲类水果的质量分布比乙类水果的质量分布更集中于平均值左右
C.甲类水果的平均质量比乙类水果的平均质量小
D.σ2=1.99
解析 由图像可知甲的正态曲线关于直线x=0.4对称,乙的正态曲线关于直线x=0.8对称,所以μ1=0.4,μ2=0.8,故A正确,C正确.由图可知甲类水果的质量分布比乙类水果的质量分布更集中于平均值左右,故B正确.因为乙的正态曲线的峰值为1.99,即=1.99,所以σ2≠1.99,故D错误,于是选D.
答案 D
填空题
6.已知随机变量X~N(1,σ2),若P(X>0)=0.8,则P(X≥2)=________.
解析 随机变量X服从正态分布N(1,σ2),∴正态曲线关于x=1对称,∴P(X≥2)=P(X≤0)=1-P(X>0)=0.2.
答案 0.2
7.一射击测试每人射击三次,每击中目标一次记10分,没有击中记0分.某人每次击中目标的概率为,则此人得分的数学期望为________;方差为________.
解析 记此人三次射击击中目标X次,得分为Y分,则X~B,Y=10X,∴E(Y)=10E(X)=10×3×=20,D(Y)=100D(X)=100×3××=.
答案 20
解答题
8.某校高三年级有1 000人,某次数学考试不同成绩段的人数ξ~N(127,72).
(1)求该校此次数学考试平均成绩;
(2)计算得分超过141的人数;
(3)甲同学每次数学考试进入年级前100名的概率是,若本学期有4次考试,X表示进入前100名的次数,写出X的分布列,并求期望与方差.
(注:若X~N(μ,σ2),则P(μ-σ
(2)P(ξ>141)=P(ξ>127+2×7)=×[1-P(μ-2σ<ξ<μ+2σ)]=0.022 8,
故得分超过141分的人数为1 000×0.022 8≈23.
(3)由题意知X~B,
故X的所有可能取值为0,1,2,3,4,
P(X=0)==,
P(X=1)=C=,
P(X=2)=C=,
P(X=3)=C=,
P(X=4)==,
故X的分布列为
X 0 1 2 3 4
P
期望E(X)=np=4×=1,
方差D(X)=np(1-p)=4××=.
9.某公司新上一条生产线,为保证新的生产线正常工作,需对该生产线进行检测.现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数μ=14,标准差σ=2,绘制如图所示的频率分布直方图.以频率值作为概率估计值.
(1)从该生产线加工的产品中任意抽取一件,记其数据为X,依据以下不等式评判(P表示对应事件的概率):
①P(μ-σ
(2)将数据不在(μ-2σ,μ+2σ)内的产品视为次品,从该生产线加工的产品中任意抽取2件,次品数记为Y,求Y的分布列与数学期望E(Y).
解析 (1)由频率分布直方图可得:
P(12
(2)100件产品中,次品个数为100×(1-0.94)=6,正品个数为94,∴Y的所有可能取值为0,1,2,其中P(Y=0)=eq \f(C,C)=,P(Y=1)=eq \f(CC,C)=,P(Y=2)=eq \f(C,C)=.
∴Y的分布列为
Y 0 1 2
P
∴Y的数学期望为E(Y)=0×+1×+2×=.
10.电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类型 第一类 第二类 第三类 第四类 第五类 第六类
电影部数 140 50 300 200 800 510
好评率 0.4 0.2 0.15 0.25 0.2 0.1
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
假设所有电影是否获得好评相互独立.
(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;
(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk=1”表示第k类电影得到人们喜欢,“ξk=0”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差D(ξ1),D(ξ2),D(ξ3),D(ξ4),D(ξ5),D(ξ6)的大小关系.
解析 (1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000,
第四类电影中获得好评的电影部数是200×0.25=50.
故所求概率是=0.025.
(2)设事件A为“从第四类电影中随机选出的电影获得好评”,
事件B为“从第五类电影中随机选出的电影获得好评”.
故所求概率为P(A+B)=P(A)+P(B)=P(A)(1-P(B))+(1-P(A))P(B).
由题意知:P(A)估计为0.25,P(B)估计为0.2.
故所求概率估计为0.25×0.8+0.75×0.2=0.35.
(3)D(ξ1)>D(ξ4)>D(ξ2)=D(ξ5)>D(ξ3)>D(ξ6).
11.某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择.
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为.第一次抽奖,若未中奖,则抽奖结束;若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖.规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,则获得1 000元;若未中奖,则所获得奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为,每次中奖均可获得奖金400元.
(1)求某员工选择方案甲进行抽奖所获奖金X(元)的分布列;
(2)试比较某员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算?
解析 (1)由题意知X的取值可能为0,500,1 000,
P(X=0)=+××=,P(X=500)=×=,P(X=1 000)=××=,
∴某员工选择方案甲进行抽奖所获得奖金X(元)的分布列为
X 0 500 1 000
P
(2)由(1)可知选择方案甲进行抽奖,所获得奖金X的均值E(X)=0×+500×+1 000×=520.
若选择方案乙进行抽奖,中奖次数ξ~B,则E(ξ)=3×=,抽奖所获奖金X的均值E(X)=E(400ξ)=400E(ξ)=480.∵520>480,∴选择方案甲比较划算.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)