9.1.1不等式及其解集
【教材分析】
本节课《不等式及其解集》是第九章第1小节的内容,是在学生学习了一元一次方程和二元一次方程组之后,学生接触到的又一种新的求解问题。教材从实际问题引入,为学生理解不等关系做了铺垫,从而降低了学生理解上的难度。书中给出了解集的定义,但还需要教师比较于方程的解加以引导和解释。书中给出了较为简单的求解集的例题,应该给学生作以变式训练以加深学生的理解。学生可以在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想方法,获得广泛的数学活动的经验。
【学情分析】
学生在以前没有直接接触过有关不等式的问题,所以理解起来会有一定的难度,但学生接触过方程的解,这一点可以帮助学生理解较为抽象的不等式的解集的概念,学生可以通过交流、合作对于简单的不等式直接写出解集,并且学生对于数轴很熟悉,因此理解解集的几何意义不会有太大的难度。
【设计思路】
教材从现实生活中的具体情境开始引入,比较性地阐述了不等关系的意义,在教学过程中我准备应用“由发现到理解,由合作、讨论突破难点,经探究、交流形成方法”的教学方法,始终发挥学生的主体作用,教师 引导、帮助、点拨。在教学中坚持“由简单问题得出方法,在理论上论证方法,再在问题中应用方法”的原则帮助学生克服难点。
【教学目标】
1、知识与技能
在“等式”的基础上理解“不等式”的概念,进而理解“解集”这一抽象的概念,并让学生掌握用数轴表示解集的方法。经历探索不等式的解集的过程,理解解集的意义。并且能够掌握、运用有关概念。培养学生的比较、分析、归纳、概括能力。
2、过程与方法
通过发现不等式的解集的意义的过程,向学生渗透比较性地看问题的思想,并且在解决问题的过程中,能进行有条理的思考,鼓励学生探索解决问题策略的多样性。培养学生类比、归纳、概括等方面的能力。发展学生把数学知识与实际问题联系的能力。
3、情感态度与价值观
培养学生创新地思考问题的态度和细致地解决和求证问题的意识,产生学数学、爱数学的思想感情。问题的产生过程与应用过程相辅相成,应注意学生对“解集”这一抽象概念的理解,关注学生的应用意识。
【教学重点】
如何应用理解不等式和解集的概念,并解决较为简单的在数轴上表示解集的问题。
【教学难点】
如何准确地理解不等式的解(集)与方程的解的相同点与不同点。
【解决教学重点及难点的措施】
通过实际问题直观地引出定义,通过比较由旧知识得出新知识。
【教学方法】 采用实践探索法、类比法。
【学法指导】 注重与实际生活联系,注重与旧知识联系,注重数形结合。
【教学内容】
教学问题设计 师生互动 设计意图
回忆与探索:多媒体 (1)一辆匀速行驶的汽车在11:20距离公路大桥50千米,12:00时这辆汽车正好行驶到大桥,试列一元一次方程求这辆汽车的速度。 (2)一辆匀速行驶的汽车在11:20距离公路大桥50千米,这辆汽车要在12:00之前行驶到大桥, 车速应满足什么条件?(3)若12:00时还到不了,车速应满足什么条件?比较与得出应关注学生对于等与不等的意义的理解!!!也要特殊讲解“不等号的种类”!!! (1)板书:不等号﹥ ﹤ ≥(不小于) ≤(不大于) ≠ (2)练习在数轴上表示不等关系 多媒体出示两个问题 (3) 板书:不等式定义 (4)比较研究不等式的解 多媒体演示解 的几何意义 (5)练习找﹥与≥的区别并讲解 (6) 多媒体演示解 集 的几何意义 板书:不等式解集定义 能使不等式成立的未知数的取值范围,叫做不等式的解的集合,简称解集 (7)猜想:两个含有>或≤的不等式的解集 变式训练 1.直接写出下列不等式的解集,并在数轴上表示出来: (1)x+3>6 (2)2x<8 (3)x-2≥0 2.用不等式表示下列各式,并说出解集:(1)a是正数 (2)a是负数 (3)a是非负数 (4)a与5的和小于7 (5)a的4倍不大于8 (6)a的一半小于3四、课堂小结学而不思则罔作业 相关习题 师:提出问题 并组织学 生回答 生:讨论后积极 解决问题并 回答,理解不等关系在实际生活当中的意义。 师:解释研究的不等号的意义,强调“≥”与“≤”的意义等同于“不小于”与‘不大于’,让学生清楚要研究的不等关系的类型。 生:从中感受思想并且体会研究过程中所应用的方法。 师:启发学生从演示中找出方法,感悟研究不等式的解的方法,并通过解与解集的比较过程,引导性地和学生一起得出不等式解集的概念及意义。 并强调关键词。 生:积极地投入其 中同时小组合 作互相支持得 出符合要求的 解集;认真思考后在数轴上画出所要表达的解集,从而进一步理解解集的几何意义。 生:积极总结并且认真听取他人意见 师:总结并指导学生完成习题。 通过列方程和列不等式帮助学生明确不等关系同样来源于现实。并且知道两者都是表示数量间的关系的。 这一过程的进行可以使学生在探究的基础上比较地理解等与不等的意义,并能够准确地把握几种不等号!! 再通过板书使学生加深记忆 通过用数轴找解使学生理解解集的无限性,从而能够接受解集的表示方法,潜移默化地培养学生数形结合的思想。 通过由“解”到“解集”的探寻过程,更进一步地加深学生印象,并通过多媒体演示使学生更进一步地掌握用数轴研究不等式解集的方式方法。并通过解集的猜想使学生感受解集与不等式的关系。 通过变式训练既让学生更进一步掌握本节所学,又为不等式解法的教学作好铺垫。 把所学知识在回顾的同时加深理解与记忆。
板书设计
9.1.1不等式及其解集 (一)不等号:﹥ ﹤ ≥(不小于) 多媒体 ≤(不大于) ≠ (二)不等式定义:(三)不等式解集定义
教 学 反 思
9.1.2不等式的性质
一、教学任务分析
不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同,掌握不等式的基本性质。
本节课教学目标:
(1)知识与技能目标:
①经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。
②掌握不等式的基本性质,并能初步运用不等式的基本性质将比较简单的不等式转化为“x>a”或“x<a”的形式。
(2)过程与方法目标:
①能说出不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。
②通过研究等式的基本性质过程类比研究不等式的基本性质过程,体会类比的数学方法。
③进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。
(3)情感与态度目标:
①通过学生自我探索,发现不等式的基本性质,提高学生学习数学的兴趣和学好数学的自信心。
②尊重学生的个体差异,关注学生对问题的实质性认识与理解。
二、教学过程分析
本节课设计了五个教学环节:第一环节:情景引入,提出问题;第二环节:活动探究,验证明确结论;第三环节:例题讲解及运用巩固;第四环节:课堂小结;第五环节:布置作业。
第一环节:情景引入,提出问题
活动内容:利用班上同学站在不同的位置上比高矮。请最高的同学和最矮的同学“同时站在地面上”,“矮的同学站在桌子上”,“高的同学站到楼下一楼”三种不同的情况下比较高矮。问题1:怎样比才公平?
活动目的:让学生体会当两位同学同时增高相同的高度或同时减少相同的高度时,比较才是公平的,高的同学仍然高,矮的同学仍然矮,这是不可能改变的事实。
活动实际效果:学生对能自己参与的活动很感兴趣,体会到不相等的两个量的比较要在“公平”的情况下进行,即要加同时加,要减同时减。
第二环节:活动探究,验证明确结论
活动内容: 参照教材与多媒体课件提出问题:
还记得等式的基本性质吗?请用字母表示它。不等式有类似的性质吗?先猜一猜。
用等号或不等号完成下面的填空。
如果2 < 3;那么
2 × 5 3 × 5;
2 × 3 × ;
2 × (-1) 3 × (- 1);
2 × (- 5) 3 × (- 5);
2 × (-) 3 × (-).
验证你的结论,用字母表示你所发现的结论。
与同伴交流你的结论,并展示。
生1:等式的基本性质1用字母可以表示为:,
类似地得到,如果在不等式的两边都加上或都减去同一个整式,结果不等号方向不变。
字母表示为:∵a>b,∴a±c>b±c;或∵a>b,∴a±c<b±c。
生2:对于等式的基本性质2,用字母可以表示为: ,其中。经过前面的探索,可类似地得到:
如果不等式两边同时乘以(或除以)同一个正数,不等号方向不变;如果不等式两边同时乘以(或除以)同一个负数,不等号的方向要发生改变。字母表示如下:
活动目的:通过等式的基本性质对比不等式的基本性质,由特殊的数值到字母代表数,从中归纳出一般性结论。进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。
活动实际效果:以问题的形式引导学生从对比中自己先猜想不等式的基本性质、再通过具体数值验算性质、最后自己总结归纳出性质并能用字母表示出来。因此在整个教学教程中,学生均处于主导地位,教师只是从旁引。这时,学生对于由自己推导出性质应该感到非常兴奋。
第三环节:例题讲解及运用巩固
活动内容:
1、在上一节课中,我们猜想,无论绳长取何值,圆的面积总大于正方形的面积,即。你相信这个结论吗?你能利用不等式的基本性质解释这一结论吗?
2、将下列不等式化成“”或“”的形式:
(1) (2)
练习设计:
1、将下列不等式化成“”或“”的形式:
(1) (2) (3)
2、已知,下列不等式一定成立吗?
(1) (2) (3) (4)
3、小明做这样一题:已知2x>3x,求x的范围。结果小明两边同时除以x,得到2>3。你知道他错在哪?
活动目的:在讲解例题的过程中要求学生说出每一步变形的依据,加强学生对不等式的基本性质的理解。随堂练习学生独立完成,师生共同讲解,能说出一个不等式为什么可以从一种形式变形为另一种形式,养成步步有据、准确表达的良好学习习惯,并通过这种方式达到熟练掌握不等式的基本性质的目的。
活动实际效果:学生在讲解例题与练习的过程中,思维非常活跃,都非常踊跃的举手要求上黑板示范,并且每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范,达到预期教学目的。
第四环节:课堂小结
活动内容:学生自己总结今天这节课有什么收获,思考后对全班说出,与全班同学讨论交流。
活动目的:学生说出自己的收获与感想与全班交流,若有任何疑问可以当堂提出供大家讨论。教师要学会倾听并鼓励学生的回答,关注学生对问题的实质性认识与理解,尊重学生的个体差异,关注学生的学习情感和自信心的建立。
活动实际效果:学生自我总结本节课所学到的知识和重点注意的问题,畅所欲言自己的切身感受与实际收获,除了今天所学新的内容之外,还复习巩固了等式的基本性质,体会新旧知识的联系与区别。
第五环节:布置作业
三、教学反思
本节课通过复习等式的基本性质,类比得出不等式的基本性质。教学中问题的设置通过与等式的基本性质相对比,引导学生自己先猜想不等式基本性质、再通过具体数值验算性质、最后自己总结归纳完善性质定理并能用字母表示出来。在接下来的讲解例题与练习的过程中,每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范。
在整个教学过程中,学生始终处于主导地位,不等式的基本性质主要由学生自己推导得出。