一、复习巩固
1.在用样本频率分布估计总体分布的过程中,下列说法中正确的是( )
A.总体容量越大,估计越精确
B.总体容量越小,估计越精确
C.样本容量越大,估计越精确
D.样本容量越小,估计越精确
解析:当样本容量越大时,估计总体越精确,故选C.
答案:C
2.甲、乙两名篮球运动员在某几场比赛中得分的茎叶图如图所示,则甲、乙两人这几场比赛得分的中位数之和是( )
A.63 B.64
C.65 D.66
解析:甲、乙两人在这几场比赛中得分的中位数分别是36和27,则中位数之和是36+27=63.
答案:A
3.如图所示表示的是甲、乙两名篮球运动员每场比赛得分情况的茎叶图,则甲和乙得分的中位数的和是( )
A.56分 B.57分
C.58分 D.59分
解析:由茎叶图可知甲得分的中位数为32分,乙得分的中位数为25分,即甲、乙得分的中位数的和是57分.
答案:B
4.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )
A.57.2,3.6 B.57.2,56.4
C.62.8,63.6 D.62.8,3.6
解析:每一个数据都加上60,所得新数据的平均数增加60,而方差保持不变.
答案:D
5.如图是一次考试结果的统计图,根据该图可估计,这次考试的平均分数为________.
解析:根据题中统计图,可估计有4人成绩在[0,20)之间,其考试分数之和为4×10=40;有8人成绩在[20,40)之间,其考试分数之和为8×30=240;有10人成绩在[40,60)之间,其考试分数之和为10×50=500;有6人成绩在[60,80)之间,其考试分数之和为6×70=420;有2人成绩在[80,100)之间,其考试分数之和为2×90=180,由此可知,考生总人数为4+8+10+6+2=30,考试总成绩为40+240+500+420+180=1 380,平均数为=46.
答案:46
6.某医院急救中心随机抽取20位病人等待急诊的时间记录如下表:
等待时间(分钟)
[0,5)
[5,10)
[10,15)
[15,20)
[20,25]
频数
4
8
5
2
1
用上述分组资料计算出病人平均等待时间的估计值=________.
解析:=×(2.5×4+7.5×8+12.5×5+17.5×2+22.5×1)=9.5.
答案:9.5
7.某小区广场上有甲、乙两群市民正在进行晨练,两群市民的年龄如下(单位:岁):
甲群:13,13,14,15,15,15,15,16,17,17;
乙群:54,3,4,4,5,6,6,6,6,56.
(1)甲群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好地反映甲群市民的年龄特征?
(2)乙群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好地反映乙群市民的年龄特征?
解析:(1)甲群市民年龄的平均数为
=15(岁),
中位数为15岁,众数为15岁.
平均数、中位数和众数相等,因此它们都能较好地反映甲群市民的年龄特征.
(2)乙群市民年龄的平均数为
=15(岁),
中位数为6岁,众数为6岁.
由于乙群市民大多数是儿童,所以中位数和众数能较好地反映乙群市民的年龄特征,而平均数的可靠性较差.
8.某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组绘制成如图所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30,0.40,0.15,0.10,0.05.
求:(1)高一参赛学生的成绩的众数、中位数;
(2)高一参赛学生的平均成绩.
解析:(1)由图可知众数为65,
∵第一个小矩形的面积为0.3,
∴设中位数为60+x,则0.3+x×0.04=0.5,得x=5,
∴中位数为60+5=65.
(2)依题意,平均成绩为55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67,故平均成绩约为67.
二、综合应用
9.有一笔统计资料,共有11个数据如下(不完全以大小排列):2,4,4,5,5,6,7,8,9,11,x,已知这组数据的平均数为6,则这组数据的方差为( )
A.6 B.
C.66 D.6.5
解析:∵=×(2+4+4+5+5+6+7+8+9+11+x)=×(61+x)=6,∴x=5.
方差为:
s2==
=6.
答案:A
10.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,则由此求出的平均数与实际平均数的差是( )
A.3.5 B.-3
C.3 D.-0.5
解析:少输入90,=3,平均数少3,求出的平均数减去实际平均数等于-3.
答案:B
11.若40个数据的平方和是56,平均数是,则这组数据的方差是________,标准差是________.
解析:设这40个数据为xi(i=1,2,…,40),平均数为.
则s2=×[(x1-)2+(x2-)2+…+(x40-)2]
=[x+x+…+x+402-2(x1+x2+…+x40)]=
=×
=0.9,
∴s===.
答案:0.9
12.某工厂36名工人的年龄数据如下表.
工人编号
年龄
工人编号
年龄
工人编号
年龄
工人编号
年龄
1
40
10
36
19
27
28
34
2
44
11
31
20
43
29
39
3
40
12
38
21
41
30
43
4
41
13
39
22
37
31
38
5
33
14
43
23
34
32
42
6
40
15
45
24
42
33
53
7
45
16
39
25
37
34
37
8
42
17
38
26
44
35
49
9
43
18
36
27
42
36
39
(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据.
(2)计算(1)中样本的均值和方差s2.
(3)36名工人中年龄在-s与+s之间有多少人?所占的百分比是多少(精确到0.01%)?
解析:(1)36人分成9组,每组4人,其中第一组的工人年龄为44,所以它在组中的编号为2,所以所有样本数据的编号为4n-2(n=1,2,…,9),
其年龄数据为:44,40,36,43,36,37,44,43,37.
(2)由均值公式知:==40,
由方差公式知:s2=×[(44-40)2+(40-40)2+…+(37-40)2]=.
(3)因为s2=,s=,
所以36名工人中年龄在-s和+s之间的人数等于年龄在区间[37,43]上的人数,即40,40,41,…,39,共23人.
所以36名工人中年龄在-s和+s之间的人数所占的百分比为×100%≈63.89%.
课件25张PPT。课前 ? 自主探究课堂 ? 互动探究课时 ? 跟踪训练课时 ? 跟踪训练