(新教材)高中数学人教版B必修第二册 5.3.3 古典概型(24张PPT课件+练习)

文档属性

名称 (新教材)高中数学人教版B必修第二册 5.3.3 古典概型(24张PPT课件+练习)
格式 zip
文件大小 972.1KB
资源类型 教案
版本资源 人教B版(2019)
科目 数学
更新时间 2020-03-02 09:50:33

文档简介


一、复习巩固
1.下列试验是古典概型的是(  )
A.任意抛掷两枚骰子,所得点数之和作为基本事件
B.为求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件
C.从甲地到乙地共n条路线,求某人正好选中最短路线的概率
D.抛掷一枚均匀的硬币至首次出现正面为止
解析:用古典概型的定义判断.
答案:C
2.先后抛掷2枚均匀的一分、二分的硬币,观察落地后硬币的正、反面情况,则下列事件包含3个基本事件的是(  )
A.“至少一枚硬币正面向上”
B.“只有一枚硬币正面向上”
C.“两枚硬币都是正面向上”
D.“两枚硬币一枚正面向上,另一枚反面向上”
解析: 抛掷2枚硬币出现的结果为正正,正反,反正,反反.故“至少一枚硬币正面向上”有3种结果.
答案:A
3.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为(  )
A. B.
C. D.1
解析:这是一个古典概型与互斥事件相结合的问题;设“恰有一名女生当选”为事件A,“恰有两名女生当选”为事件B,显然A、B为互斥事件.从10名同学中任选2人共有45种选法(即45个基本事件),而事件A包括21个基本事件,事件B包括3个基本事件,故P=P(A)+P(B)=+=.
答案:B
4.已知集合A={-1,0,1},点P坐标为(x,y),其中x∈A,y∈A,记点P落在第一象限为事件M,则P(M)=(  )
A. B.
C. D.
解析:所有可能的点是(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共9个,其中在第一象限的有1个,因此P(M)=.故选C.
答案:C
5.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是(  )
A. B.
C. D.
解析:从1,2,3,4中任取2个不同的数,有(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12种情形,而满足条件“2个数之差的绝对值为2”的只有(1,3),(2,4),(3,1),(4,2),共4种情形,所以取出的2个数之差的绝对值为2的概率为=.
答案:B
6.甲、乙两人随意入住两间客房,则甲、乙两人各住一间房的概率是________.
解析:甲、乙两人入住两间客房有甲、乙两人同住一间房,甲、乙两人各住一间房共4种情况,其中甲、乙两人各住一间房的概率为=.
答案:
7.甲、乙、丙三名同学上台领奖,从左到右按甲、乙、丙的顺序排列,则三人全都站错位置的概率是________.
解析:基本事件为甲乙丙,甲丙乙,乙丙甲,乙甲丙,丙甲乙,丙乙甲,共6个;三人全部错的有乙丙甲,丙甲乙,共2个,故所求事件的概率为=.
答案:
8.从集合A={2,3}中随机取一个元素m,从集合B={1,2,3}中随机取一个元素n,得到点P(m,n),则点P在圆x2+y2=9内部的概率为________.
解析:从集合A,B中分别取一个元素得到点P(m,n),包含(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6个基本事件,设点P在圆x2+y2=9的内部为事件E,即满足m2+n2<9,则事件E包含(2,1),(2,2),共2个基本事件,则P(E)==.
答案:
9.甲、乙两人做出拳游戏(锤子,剪刀,布).
求:(1)平局的概率;
(2)甲赢的概率;
(3)乙赢的概率.
解析:设平局为事件A,甲赢为事件B,乙赢为事件C.容易得到下图.
(1)平局含3个基本事件(图中的△),P(A)==.
(2)甲赢含3个基本事件(图中的⊙),P(B)==.
(3)乙赢含3个基本事件(图中的※),P(C)==.
10.从甲、乙、丙、丁四个人中选两名代表.
求:(1)甲被选中的概率;
(2)丁没被选中的概率.
解析:(1)记甲被选中为事件A,基本事件有甲乙,甲丙,甲丁,乙丙,乙丁,丙丁共6个,事件A包含的事件有甲乙,甲丙,甲丁共3个,则P(A)==.
(2)记丁被选中为事件B,由(1)同理可得P(B)=,又因丁没被选中为丁被选中的对立事件,设为,
则P()=1-P(B)=1-=.
二、综合应用
11.设a是抛掷一枚骰子得到的点数,则方程x2+ax+2=0有两个不相等的实根的概率为(  )
A.   B.   C.   D.
解析:基本事件总数为6,若方程有两个不相等的实根,则a2-8>0,满足上述条件的a为3,4,5,6,故P==.
答案:A
12.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于(  )
A. B. C. D.
解析:利用古典概型求解.
设袋中红球用a表示,2个白球分别用b1,b2表示,3个黑球分别用c1,c2,c3表示,则从袋中任取两球所含基本事件为:(a,b1),(a,b2),(a,c1),(a,c2),(a,c3),(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3),共15个.
两球颜色为一白一黑的基本事件有:
(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),共6个.
∴其概率为=.
答案:B
13.甲、乙两人玩数字游戏,先由甲心中任想一个数字记为a,再由乙猜甲刚才想的数字,把乙猜的数字记为b,且a,b∈{1,2,3,4,5,6},若|a-b|≤1,则称“甲、乙心有灵犀”,现任意找两个人玩这个游戏,得出他们“心有灵犀”的概率为________.
解析:数字a,b的所有取法有36种,满足|a-b|≤1的取法有16种,所以其概率为P==.
答案:
14.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为________.
解析:该树枝的树梢有6处,有2处能找到食物,所以获得食物的概率为=.
答案:
15.为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).
高校
相关人数
抽取人数
A
18
x
B
36
2
C
54
y
(1)求x,y;
(2)若从高校B,C抽取的人中选2人作专题发言,求这2人都来自高校C的概率.
解析:(1)由题意可得,==,所以x=1,y=3.
(2)记从高校B抽取的2人为b1,b2,从高校C抽取的3人为c1,c2,c3,则从高校B,C抽取的5人中选2人作专题发言的基本事件有(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3),共10种.
设选中的2人都来自高校C的事件为X,则X包含的基本事件有(c1,c2),(c1,c3),(c2,c3),共3种,因此P(X)=.
故选中的2人都来自高校C的概率为.
课件24张PPT。课前 ? 自主探究课堂 ? 互动探究课时 ? 跟踪训练课时 ? 跟踪训练