2.1 不等关系
学习目标:
1.理解不等式的意义.
2.能根据条件列出不等式.
3.通过列不等式,训练学生的分析判断能力和逻辑推理能力.
4.通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学生学习数学的信心和兴趣.
学习重点:用不等关系解决实际问题.
学习难点:正确理解题意列出不等式.
预习作业:
请同学们预习作业教材P2-4的内容,在学习的过程中请弄清以下几个问题:
1.不等式的概念:
一般地,用符号“<”(或≤),“>”(或≥)连接的式子叫做______________
2.长度是L的绳子围成一个面积不小于100的圆,绳长L应满足的关系式为_________________
例1、用不等式表示
(1)a是正数; (2)a是负数;
(3)a与6的和小于5; (4)x与2的差小于-1;
(5)x的4倍大于7; (6)y的一半小于3.
变式训练:
1、 用适当的符号表示下列关系:
(1) a是非负数;
(2) 直角三角形斜边c比它的两直角边a、b都长;
(3) X与17的和比它的5倍小。
2.(1)当x=2时,不等式x+3>4成立吗?
(2)当x=1.5时,成立吗?
(3)当x=-1呢?
活动与探究:
a,b两个实数在数轴上的对应点如图1-2所示:
图1-2
用“<”或“>”号填空:
(1)a__________b;(2)|a|__________|b|;(3)a+b__________0;(4)a-b__________0;
(5)a+b__________a-b;(6)ab__________a
拓展训练:
1.某校两名教师带若干名学生去旅游,联系了两家标价相同的旅游公司,经洽谈后,甲公司优惠条件是1名教师全额收费,其余7.5折收费; 乙公司的优惠条件是全部师生8折收费.试问当学生人数超过多少人时,其余7.5折收费; 甲旅游公司比乙旅游公司更优惠? (只列关系式即可)
2.2 不等式的基本性质
学习目标:
1.探索并掌握不等式的基本性质;
2.理解不等式与等式性质的联系与区别.
3.通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.
学习重点:
探索不等式的基本性质,并能灵活地掌握和应用.
学习难点:
能根据不等式的基本性质进行化简.
回顾等式的基本性质:
等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.
基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.
预习作业:学习教材P7-P8的内容,通过学习弄清以下问题:
1.不等式的基本性质有哪些?
不等式的基本性质1:
不等式的两边都加上(或减去)同一个整式,不等号的方向__________
不等式的基本性质2:
不等式的两边都乘以(或除以)同一个正数,不等号的方向____
不等式的基本性质3:
不等式的两边都乘以(或除以)同一个负数,不等号的方向____
2.不等式的基本性质与等式的基本性质有什么异同?
例1、将下列不等式化成“x>a”或“x<a”的形式:
(1)x-5>-1;
(2)-2x>3;
(3)3x<-9.
(4)
(5)
(6)
说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.
2.已知,下列不等式一定成立吗?
(1) (2) (3) (4)
议一议:
1. 讨论下列式子的正确与错误.
(1)如果a<b,那么a+c<b+c; (2)如果a<b,那么a-c<b-c;
(3)如果a<b,那么ac<bc; (4)如果a<b,且c≠0,那么>.
2.设a>b,用“<”或“>”号填空.
(1)a+1 b+1; (2)a-3 b-3; (3)3a 3b;
(4) ; (5)- -; (6)-a -b.
变式训练:
1.根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:
(1)x-2<3; (2)6x<5x-1;
(3)x>5; (4)-4x>3.
2.设a>b.用“<”或“>”号填空.
(1)a-3 b-3; (2) ; (3)-4a -4b; (4)5a 5b;
(5)当a>0,b 0时,ab>0; (6)当a>0,b 0时,ab<0;
(7)当a<0,b 0时,ab>0; (8)当a<0,b 0时,ab<0.
能力提高:
1.比较a与-a的大小. ( 说明:解决此类问题时,要对字母的所有取值进行讨论.)
2.有一个两位数,个位上的数字是a,十位上的数是b,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a与b哪个大哪个小?
2.3 不等式的解集
学习目标:
1.能够根据具体问题中的大小关系了解不等式的意义.
2.理解不等式的解、不等式的解集、解不等式这些概念的含义.
3.会在数轴上表示不等式的解集.
4.培养学生从现实生活中发现并提出简单的数学问题的能力.
5.经历求不等式的解集的过程,发展学生的创新意识.
学习重点:
1.理解不等式中的有关概念.
2.探索不等式的解集并能在数轴上表示出来.
学习难点:
探索不等式的解集并能在数轴上表示出来.
预习作业:
请同学们预习作业教材P10-11的内容,在学习的过程中请弄清以下几个问题:
1.什么叫不等式的解?
能使__________成立的未知数的值,叫做不等式的解
2.什么叫不等式的解集?
一个含有未知数的不等式的___________,组成这个不等式的解集
3.什么叫解不等式?
求________________的过程叫做解不等式
4.如何将不等式的解集在数轴上表示出来?
例1:根据不等式的基本性质求不等式的解集,并把解集在数轴上表示出来.
(1)x-2≥-4; (2)2x≤8
(3)-2x-2>-10
说明:不等式的解集数轴上表示注意空心圆和实心圆的用法。解集不包括这个数用空心圆,
包括这个数用实心圆。
变式训练:
1.判断正误:
(1)不等式x-1>0有无数个解; (2)不等式2x-3≤0的解集为x≥.
2.将下列不等式的解集分别表示在数轴上:X| . c|
(1)x>4;
(2)x≤-1;
(3)x≥-2;
(4)x≤6.
3.不等式的解集x<3与x≤3有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把 这两个解集表示出来.
4.不等式x≥-3的负整数解是_________ 不等式x-1<2的正整数解是__________
能力提高:
1.给出四个命题:①若a>b,c=d, 则ac>bd ;②若ac>bc,则a>b;③若a>b,则ac2>bc2;④若ac2>bc2,则a>b。正确的有 ( )
A.1个 B.2个 C.3个 D.4个
2.在数轴上表示:
(1)大于3而不超过6的数;
(2)小于5且不小于-4的数.
3.如果不等式(a-1)X>a-1的解集为X<1,你能确定a的范围吗?不妨试试看.
4已知不等式3x-a≤0的正整数解是1,2,3,求a的取值范围。
2.4 一元一次不等式
第1课时 一元一次不等式的解法
§1.4一元一次不等式(1)
学习目标:
1.体会一元一次不等式的形成过程;
2.会解简单的一元一次不等式,并能在数轴上表示出解集;初步认识一元一次不等式的应用价值,发展学生分析问题、解决问题的能力;
1.初步感知实际问题对不等式解集的影响,积累利用一元一次不等式解决简单实际问题的经验。
学习重点:明确什么是一元一次不等式,
学习难点:体会建立不等式模型解决实际问题的全过程,体会学习不等式的作用。
预习作业:
1、观察下列不等式:
(1); (2) (3)x<4 (4)>240
这些不等式有哪些共同特点?
2、(1).不等式的概念:
左右两边都是________,只含有__________,并且未知数的最高次数是_____的不等式,叫做一元一次不等式
(2)解一元一次不等式大致要分五个步骤进行:
(1)____________ (2)____________
(3)____________ (4)____________ (5)____________
例1:1、下列不等式中是一元一次不等式的有____________。
(1)3x>-9 (2)3(x+2)-4x<x-3 (3) (4)
例2、解下列不等式,并把解集表示在数轴上。
(1)5x<200 (2) <3
(3) x-4≥2(x+2) (4)<
变式训练: 解下列不等式,并把解集表示在数轴上。
(1)
(2)
(3)
(4)
能力提高:
1、y取何正整数时,代数式2(y-1)的值不大于10-4(y-3)的值。
2、m取何值时,关于x的方程的解大于1。
3.是否存在整数m,使关于x的不等式与是同解不等式?如果存在,求出整数m和不等式的解集;如果不存在,请说明理由。
2.4 一元一次不等式
第2课时 一元一次不等式的应用
学习目标:
1.进一步熟练掌握解一元一次不等式
2.利用一元一次不等式解决简单的实际问题
学习重点:一元一次不等式的应用
学习难点:将实际问题抽象成数学问题的思维过程。
预习作业:
1、解一元一次不等式应用题的步骤:
(1)________________ (2)________________
(3)________________ (4)________________ (5)________________
2、小红读一本500页的科普书,计划10天内读完,前5天因种种原因只读了100页,问从第6天起平均每天至少读________________页,才能按计划完成。
例1、解下列不等式,并把它们的解集分别表示在数轴上
(1) (2)
2、一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?
3、小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2.2元,她买了2本笔记本.请你帮她算一算,她还可能买几支笔?
拓展:
1、小王家里装修,他去商店买灯,商店柜台里现有功率为100瓦的白炽灯和40瓦的节能灯,它们的单价分别为2元和32元,经了解,这两种灯的照明效果和使用寿命都一样,已知小王所在地的电价为每千瓦时0.5元,请问当这两种灯的使用寿命超过多长时间时,小王选择节能灯才合算。
2、某种商品进价为800元,出售时标价为1200元,后来由于该商品积压,商家准备打折出售,但要保持利润率不低于5%,你认为该商品至多可以打几折?
3、某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元。
(1)符合公司要求的购买方案有哪几种?请说明理由。
(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金收入不低于1500元,那么应选择以上哪种购买方案?
2.5 一元一次不等式与一次函数
第1课时 一元一次不等式与一次函数的关系
学习目标:
1.一元一次不等式与一次函数的关系.
2.会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.
3.通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.
4.训练大家能利用数学知识去解决实际问题的能力.
学习重点:了解一元一次不等式与一次函数之间的关系.
学习难点:
自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.
预习作业:
请同学们预习作业教材P20-21的内容,弄清以下几个问题:
1、形如_______形式,叫做一次函数;形如_______形式,叫做正比例函数;确定一次函数图像需要_______个点。
2、一次函数y=kx+b(k0)的图像是_______.当kx+b_______0,表示直线在x轴上方的部分,当kx+b_______0,表示直线在x轴的交点,当kx+b_______0,表示直线在x轴下方的部分。
例1、作出函数y=2x-5的图象,观察图象回答下列问题.
(1)x取哪些值时,2x-5=0? (3)x取哪些值时,2x-5<0?
(2)x取哪些值时,2x-5>0? (4)x取哪些值时,2x-5>3?
变式训练:
已知一次函数与。当x取何值时,(1)
例2、兄弟俩赛跑,哥哥先让弟弟跑9 m,然后自己才开始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函数关系式,画出函数图象,观察图象回答下列问题:
(1)何时弟弟跑在哥哥前面? (2)何时哥哥跑在弟弟前面?
(3)谁先跑过20 m?谁先跑过100 m? (4)你是怎样求解的?与同伴交流.
能力提高:
1.某医院研究发现了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10-3毫克),接着逐步衰减,10小时时血液中含药量为每毫升3毫克,每毫升血液中含药量y(微克),随着时间x(小时)的变化如图所示(成人按规定服药后).
(1)分别求出x≤2和x≥2时,y与x之间的函数关系式;
(2)根据图象观察,如果每毫升血液中含药量为4微克或4微克以上,在治疗疾病时是有效的,那么这个有效时间是多少?
2、2008年6月1日起,我国实施“限塑令”,开始有偿使用环保购物袋,为了满足市场需求,某厂家生产A,B两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表:
成本(元每个) 售价(元每个)
A 2 2.3
B 3 3.5
设每天生产A种购物袋x个,每天获利y元(1)求出y与x的函数关系式;(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?
2.5 一元一次不等式与一次函数
第2课时 一元一次不等式与一次函数的综合应用
学习目标:
1.进一步体会不等式的知识在现实生活中的运用.
2.通过用不等式的知识去解决实际问题,以发展学生解决问题的能力.
学习重点:
利用不等式及等式的有关知识解决现实生活中的实际问题.
学习难点:
认真审题,找出题中的等量或不等关系,全面地考虑问题是本节的难点.
预习作业:
1、直线y=kx+b(k0)与一元一次不等式的关系:
y,则__________ y0,则________
2、直线__________
例1、某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25 人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用?其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?
例2、某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原价收费,其余每台优惠25%.乙商场的优惠条件是:每台优惠20%.(1)分别写出两家商场的收费与所买电脑台数之间的关系式.(2)什么情况下到甲商场购买更优惠?(3)什么情况下到乙商场购买更优惠?(4)什么情况下两家商场的收费相同?
变式训练:
1.某学校需刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘带);若学校自刻,除租用刻录机需120元外,每张还需成本4元(包括空白光盘带),问刻录这批电脑光盘,到电脑公司刻录费用省,还是自刻费用省?请说明理由.
2.红枫湖门票是每位45元,20人以上(包含20人)的团体票七五折优惠,现在有18位游客买20人的团体票
(1)比买普通票总共便宜多少钱?
(2)不足20人时,多少人买20人的团体票才比普通票便宜?
能力提高:
1、某办公用品销售商店推出两种优惠方法:(1)购一个书包,赠送1支水性笔;(2)购书包和水性笔一律按9折优惠。书包每个定价20元,水性笔每支定价5元。小丽和同学需购4个书包,水性笔若干(不少于4支)。
(1)分别写出两种优惠方法购买费用(y元)与所买水性笔支数x(支)之间的函数关系式;
(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需购买这种书包4个和水性笔12支,请你设计怎样购买最经济。
2、某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办海产品运输业务,已知运输路程为120千米,汽车和火车的速度分别为60千米/时,100千米/时,两货运公司的收费项目及收费标准如下表所示:
运输工具 运输费单价 (元/吨·千米) 冷藏费单价 (元/吨·小时) 过桥费 (元) 装卸及管理费(元)
汽车 2 5 200 0
火车 1.8 5 0 1600
(1)批发商批海产品 为x吨 ,汽车和火车 的费用分别是y1、y2,求y1、y2与x的关系。
(2)海产品不少于30吨,为了节省费用,选择哪个公司承担运输业务?
注:“元/吨·千米”表示每吨货物每千米的运费;“元/吨·小时”表示每吨货物每小时的冷藏费.
2.6 一元一次不等式组
第1课时 一元一次不等式组的解法
学习目标:
1.理解一元一次不等式组及其解的意义。
2. 总结解一元一次不等式组的步骤及情形.
3.通过总结解一元一次不等式组的步骤,培养学生全面系统的总结概括能力.
学习重点:
1. 利用数轴,正确求出一元一次不等式的解集
2.巩固解一元一次不等式组.
学习难点:
讨论求不等式解集的公共部分中出现的所有情况,并能清晰地阐述自己的观点.
预习作业:
1、 关于________________________的几个一元一次不等式合在一起,就组成了一元
一次不等式组。
1、 一元一次不等式组里各个不等死的解集的___________________,叫做这个一
元一次不等式组的解集。
3、求不等式组解集的过程叫做_____________________。
填表:
不等式组
数轴表示
解集
4.两个一元一次不等式所组成的不等式组的解集有以下四种情形.
设a<b,那么
(1)不等式组的解集是x>b; 同大取大
(2)不等式组的解集是x<a; 同小取小
(3)不等式组的解集是a<x<b; 大小小大中间找
(4)不等式组的解集是无解. 大大小小找不到
这是用式子表示,也可以用语言简单表述为:
同大取大;同小取小;大小小大中间找;大大小小找不到。
例1:解下列不等式组,把解集在数轴上表示出来,并求出其整数解
(1) (2)
例2:已知方程组的解为非负数,求的取值范围。
变式训练:
1.若有意义,求的取值范围
2.解下列不等式组
(1) (2)
(3) (4)
(3)如果关于x的方程x+2m-3=3x+7的解为不大于2的非负数,求m的范围.
拓展训练:
1、不等式的解为_______________,的解为_______________
2、若不等式组的解集是无解,则的取值范围是________________
3、如果不等式组的解集是,则的取值范围是____________________
4、若不等式组有解,则 的取值范围____________________
5、已知方程组的解是正数。
(1)求的取值范围
(2)化简
2.6 一元一次不等式组
第2课时 一元一次不等式组的解法及应用
学习目标:
1.进一步巩固解一元一次不等式组的过程.
2.总结解一元一次不等式组的步骤及情形.
学习重点:
巩固解一元一次不等式组的过程.
学习难点:
讨论求不等式解集的公共部分中出现的所有情况,并能清晰地阐述自己的观点。
合作探究:
1、解下列不等式组
⑴ ⑵
⑶ ⑷
请大家认真观察一下这四组解,认真讨论解的情况,你发现了什么规律?
总结:一元一次不等式所组成的不等式组的解集有以下四种情形.设a<b,那么
(1)不等式组解集是x>b;
(2)不等式组解集是x<a;
(3)不等式组解集是a<x<b;
(4)不等式组解集是无解.
变式训练:
1.解下列不等式组
(1) (2)
(3)(4)
拓展训练:
1.方程的解满足,
求的范围.
2.关于的不等式组的整数解共有五个,求的范围。
品教学网
第二章 一元一次不等式与一元一次不等式组
一、学习目标
1、 了解不等式、不等式的解集的概念,会在数轴上表示出不等式的解集。
2、 掌握不等式的三条基本性质,并会用它们解一元一次不等式。
3、 了解一元一次不等式解集的概念,会利用数轴解一元一次不等式组
4、 理解一次函数与一元一次不等式的关系,会利用不等式解决有关函数问题。
二、知识结构脉络
四、知识点梳理
1、 不等式(组)有关概念
不等式:不等式的解:不等式的解集:解不等式:一元一次不等式:其标准形式为ax一b>0,或ax一b<0(a0)”一元一次不等式组:不等式组的解集:
解不等式组:求出不等式组的解集的过程叫解不等组,
解不等式组的步骤:(i)先求出各个不等式的解集(ii)取各个解集的公共部分
(iii)利用数轴直观显示,并确定其特殊解。 四种基本类型(如下表)
不等式组类型(a>b) 解集 数轴显示 语言描述
(I) 同大取大
(II) 同小取小
(III) b(IV) 无解 小小大大无处找
2、 不等式的基本性质(如下表)
性质 文字叙述 数学语言
(I) 不等式的两边加(或减)同一个数或(式子),不等号的方向不变 若a>b则a土c>b土c
(II) 不等式的两边乘以(或除以)同一个正数,不等号的方向不变 若a>b且c>0则ac>bc或
(III) 不等式的两边乘以(或除以)同一个负数,不等号的方向改变 若a>b且c<0则ac3运算性质
(1) 若a>b,c>d,则a十c>b十d(同向不等式相加)
(2) 若a>b,cb一d(异向不等式相减)
(3) 若a>b>0,c>d>0,ac>bd
(4) 若a>b>0,0b>0,则
(6) 若a>b>0,n为正整数,则 (7)若a>b>0,n为不小于2的整数则
4、解不等式的步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)未知数的系数化为1。要注意把系数化为1时,如果不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;如果不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变;解不等式要根据题目的要求和特点合理灵活地选择解题步骤。
5、一元一次不等式(组)的应用
(1) 注意设未知数的方法,找出问题中量与量之间的不等关系,抽象出不等式(组),求出不等式(组)的解集后,要注意验证解的合理性。
(2) 正确理解列不等式(组)的关键词。如不少于、不超过、大于、小于、至少、至多、不足、不空、不满等。其中,不少于就是大于或等于表示为,不超过、至多都是不大于的意思,不大于就是小于或等于,表示为,非负数就是正数和零等。
5、 思想方法总结
1.应用类比的方法:
2.应用数形结合的思想:充分利用数轴的直观性,简捷性,生动形象地理解不等式和一次函授的有关知识,真正掌握基本技能。
3.转化的思想方法:不等与相等之间可以相互转化,有时将不等问题转化为相等问题来解决,有时又可以将相等问题转化为不等问题来解决。
4.构建的思想方法:列不等式(组)解决实际问题,实际上是应用构建的思想方法。所谓构建的思想方法是建立起解决实际问题的数学模型,如方程(组)、不等式(组)等,然后用数学模型解决实际问题,这种思想方法在今后应用广泛。
6、 易错题分析
例1、若a>b,b,c为实数,则下列正确的是()
A ac>bc, B acbc2 D ac2bc2
例2、关于x的不等式组无解,则m的取值范围( )
A m>3 B C D m<3
例3、x取何值时,x的一半与x的3倍的差至少是4?
正解:由题意得即系数化为1,得故当时,x的一半与x的3倍的差至少是4。
例4、(1)解不等式
(2)解不等式并把解集在数轴上表示出来
例5、一辆公共汽车上有(5a一4)名乘客,在某一车站有(9一2a)名乘客下车,车上原来有多少名乘客?
错解:由题意得解得 取整数得a=1,2,3,4
把a的值分别代入5a一4,得5a一4=1,6,11,16。
答:车上原来有1人,6人,11人,或16人。
剖析:错解忽视了这一条件
正解:由题意得
化简得所以 a取整数得a=2,3,4
当a=2时,5a一4=6,当a=3时,5a一4=11,当a=4时,5a一4=16。
答:原来车上有乘客6人,11人,或16人。
七、典型考点扫描
考点一:用不等式表示数量关系:
例1、用不等式表示下列数量关系:
(1) x与3的和是非负数
(2) a与b的差是非正数
考点二:考查不等式(组)基础知识
例2:不等式的解集是( )
A、 B、 C、 D、
例2:不等式≥3的解集在数轴上表示正确的是( )
(?http:?/??/?www.shulihua.net?)
例3:如图1,小明和爸爸妈妈三人玩跷跷板.三人的体重一共为千克,爸爸坐在跷跷板的一端,体重只有妈妈一半的小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地.那么小明的体重应小于( )
A.千克 B.千克 C.千克 D.千克
例4关于x的不等式组只有4个整数解,则a的取值范围( )
A B C D
考点三、求不等式中字母的值
例4:如果关于的不等式(a+1)x>a+1解集为x<1,则a的取值范围是( )
A. a>0 B.a<0 C. a>-1 D.a<-1
例5:关于x的不等式3x-2a≤-2的解集如图2,则a的值是______.
考点四、考查一元一次不等式与一次函数
例6、己知当x取何值时?
分析:方法一:可将函数或方程转化为不等式,即有求得自变量x的范图为x<一1。
方法二:可作出两个函数的图象如图,所示:两直线相交于点(—1,3)依推上面的图象比下面的图象函数值大,求得自变量的范围。
考点四、考查利用不等式(组)解实际应用问题
例7、(2006深圳市)初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数( )
A.至多6人 B.至少6人 C.至多5人 D.至少5人
例8:甲,乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次降价20%,在哪家超市购买此种商品更合算( )
A. 甲 B乙 C.同样 D.与商品价格无关
例9:学校计划购买40支钢笔,若干本笔记本(笔记本数超过钢笔数)甲、乙两家文具店的标价都是钢笔10元/支,笔记本2元/支,甲店的优惠方式是钢笔打9折,笔记本打8折,乙店的优惠方式是每买5支送1本笔记本,钢笔不打折,购买的笔记本打7.5折,试问购买笔记本在什么范围内到甲店更合算?
例10:“中国荷藕之乡”扬州市宝应县有着丰富的荷藕资源,某荷藕加工企业己收购荷藕60吨,根据市场信息,如果对荷藕进行粗加工,每天可加工8吨,每吨可获利1000元,如果进行精加工,每天可加工0.5吨,每吨可获利5000元,由于受设备条件的限制,两种加工方式不能同时进行。
(1)设精加工的吨数为x吨,则粗加工的吨数为 吨,加工这批荷藕需要 天,可获利 元(用含x的代数式表示)
(2)为了保鲜的需要,该企业必须在一个月(30天)内将这批荷藕全部加工完毕。精加工的吨数在什么范围内,该企业加工这批荷藕的获利不低于80000元?
一元一次不等式组 (?http:?/??/?www.7wenta.com?/?zhuanti?/?454.html" \t "http:?/??/?www.7wenta.com?/?topic?/?_blank?)解应用题的一般步骤为:
列不等式组 (?http:?/??/?www.7wenta.com?/?zhuanti?/?260.html" \t "http:?/??/?www.7wenta.com?/?topic?/?_blank?)解决实际问题的步骤与列一元一次不等式 (?http:?/??/?www.7wenta.com?/?zhuanti?/?456.html" \t "http:?/??/?www.7wenta.com?/?topic?/?_blank?)解应用题的步骤相类似,所不同的是,前者需寻求的不等关系往往不止一个,而后者只需找出一个不等关系即可。
1.审:认真审题,分清已知量、未知量及其关系,找出题中的不等关系,要抓住题中的关键词语,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等;
2.设:设出适当的未知数;
3.列:根据题中的不等关系列出不等式组;
4.解:解出所列不等式组的解集;
5.答:写出答案,从不等式组的解集中找出符合题意的答
图1