(共42张PPT)
第1节 行星的运动
填一填、做一做、记一记
课前自主导学
第谷
椭圆
面积
三次方
二次方
十分接近
圆心
角速度
线速度
匀速圆周
轨道半径的三次方
公转周期的二
次方
×
×
×
×
√
√
析要点、研典例、重应用
课堂互动探究
MP
N+1
B.
M
C./N+11
.N3
第1节 行星的运动
课时分层训练
「基础达标练」
1.下列说法正确的是( )
A.地球是宇宙的中心,太阳、月亮及其他行星都绕地球运动
B.太阳是宇宙的中心,所有天体都绕太阳运动
C.太阳是静止不动的,地球和其他行星都绕太阳运动
D.“地心说”和哥白尼提出的“日心说”现在看来都是不完全正确的
解析:选D 地心说是错误的,所以A错误;太阳系在银河系中运动,银河系也在运动,所以B、C错误;从现在的观点看地心说和日心说都是不完全正确的,都是有其时代局限性的,所以D正确.
2.(多选)如图所示,对开普勒第一定律的理解,下列说法中正确的是( )
A.在行星绕太阳运动一周的时间内,它离太阳的距离是不变的
B.在行星绕太阳运动一周的时间内,它离太阳的距离是变化的
C.某个行星绕太阳运动的轨道一定是在某一固定的平面内
D.某个行星绕太阳运动的轨道一定不在一个固定的平面内
解析:选BC 根据开普勒第一定律(轨道定律)的内容可以判定:行星绕太阳运动的轨道是椭圆,有时远离太阳,有时靠近太阳,所以它离太阳的距离是变化的,选项A错误,B正确;行星围绕着太阳运动,由于受到太阳的引力作用而被约束在一定的椭圆轨道上,而椭圆在一个平面上,选项C正确,D错误.
3.如图所示是行星m绕恒星M运动情况的示意图,下列说法正确的是( )
A.速度最大点是B点
B.速度最小点是C点
C.m从A到B做减速运动
D.m从B到A做减速运动
解析:选C 由开普勒第二定律可知,靠近M的A点行星运行速度最大,离M最远的B点行星运行速度最小,故A、B错误;行星由A向B运动的过程中,行星与恒星的连线变长,其速度减小,故C正确,D错误.
4.关于行星绕太阳的运动,下列说法中正确的是( )
A.行星绕太阳运动时太阳位于行星轨道的中心处
B.行星的运动方向总是沿着轨道的切线方向
C.行星的运动方向总是与它和太阳的连线方向垂直
D.所有行星都沿圆轨道绕太阳运动
解析:选B 根据开普勒第一定律,太阳系中的八大行星都沿椭圆轨道绕太阳运动,而太阳就位于所有椭圆的一个公共焦点上,所以A、D选项错误;当行星从近日点向远日点运动时,行星的运行方向和它与太阳连线的夹角大于90°,当行星从远日点向近日点运动时,行星的运行方向和它与太阳连线的夹角小于90°,所以选项B正确,C错误.
5.关于行星绕太阳的运动,下列说法中正确的是( )
A.八大行星都在同一个轨道上运动
B.八大行星的轨道有的是圆形,有的是椭圆
C.八大行星有的运动得快一些,有的慢一些
D.对于某一行星,它绕太阳运动时速度大小不变
解析:选C 太阳系中的八大行星都沿着各自的椭圆轨道绕太阳运动,而太阳位于八大行星椭圆轨道的一个公共焦点上,选项A、B错误;离太阳越近的行星运动得越快,对于某一行星来说,近日点的速度大于远日点的速度,选项C正确 ,D错误.
6.一恒星系统中,行星a绕恒星做圆周运动的公转周期是0.6年,行星b绕恒星做圆周运动的公转周期是1.9年,根据所学知识比较两行星到恒星的距离关系( )
A.行星a距离恒星近
B.行星b距离恒星近
C.行星a和行星b到恒星的距离一样
D.条件不足,无法比较
解析:选A 根据开普勒第三定律可知ra<rb,故A选项正确.
7.宇宙飞船围绕太阳在近似圆周的轨道上运动,若其轨道半径是地球轨道半径的9倍,则宇宙飞船绕太阳运行的周期是( )
A.3年 B.9年
C.27年 D.81年
解析:选C 由开普勒第三定律得:T2=×1年=27年,故C选项正确,A、B、D错误.
8.已知两颗行星的质量m1=2m2,公转周期T1=2T2,则它们绕太阳运转轨道的半长轴之比为( )
A.= B.=
C.= D.=
解析:选C 由=k知,,则=,与行星质量无关,故C选项正确.
9.(多选)把火星和地球绕太阳运行的轨道视为圆周,由火星和地球绕太阳运动的周期之比可求得( )
A.火星和地球的质量之比
B.火星和太阳的质量之比
C.火星和地球到太阳的距离之比
D.火星和地球绕太阳运行速度的大小之比
解析:选CD 由于火星和地球均绕太阳做匀速圆周运动,由开普勒第三定律,=k,k为常量,又v=,可知火星和地球到太阳的距离之比和运行速度大小之比,所以C、D选项正确.
「能力提升练」
10.某行星沿椭圆轨道运行,近日点离太阳距离为a,远日点离太阳的距离为b,过近日点时行星的速率为va,则过远日点时的速率为( )
A.vb=va B.vb=va
C.vb=va D.vb=va
解析:选C 如图所示,A、B分别为近日点、远日点,由开普勒第二定律,行星和太阳的连线在相等的时间里扫过的面积相等,取足够短的时间Δt,则有:va·Δt·a=vb·Δt·b,所以 vb=va,故A、B、D错误,C正确.
11.太阳系中的8大行星的轨道均可以近似看成圆轨道.下列4幅图是用来描述这些行星运动所遵从的某一规律的图象.图中坐标系的横轴是lg,纵轴是lg;这里T和R分别是行星绕太阳运行的周期和相应的圆轨道半径,T0和R0分别是水星绕太阳运行的周期和相应的圆轨道半径.下列4幅图中正确的是( )
解析:选B 根据开普勒第三定律=k可得R3=kT2,两式相除后取对数,得,整理得2lg=3lg结合数学知识可知,选项B正确.
12.2018年2月6日,马斯克的SpaceX猎鹰重型火箭将一辆樱红色特斯拉跑车发射到太空.图甲是特斯拉跑车和Starman(宇航员模型)的最后一张照片,它们正在远离地球,处于一个环绕太阳的椭圆形轨道(如图乙).远日点超过火星轨道,距离太阳大约为3.9亿公里,已知日、地的平均距离约为1.5亿公里.则特斯拉跑车环绕太阳的周期约为(可能用到的数据:=2.236,=2.47)( )
A.18个月 B.29个月
C.36个月 D.40个月
解析:选B 由开普勒第三定律,即=可得T车≈29个月,故A、C、D错误,B正确.
13.(多选)太阳系中的第二大行星——土星的卫星众多,目前已发现达数十颗.下表是有关土卫五和土卫六两颗卫星的一些参数.则两卫星相比较,下列判断正确的是( )
卫星 距土星的距离/km 半径/km 质量/kg 发现者 发现年代
土卫五 527 000 765 2.49×1021 卡西尼 1672
土卫六 1 222 000 2 575 1.35×1023 惠更斯 1655
A.土卫五的公转周期较小
B.土卫六的转动角速度较大
C.土卫六的向心加速度较小
D.土卫五的公转速度较大
解析:选ACD 比较同一个行星的两卫星的运动情况,其方法和比较太阳的任意两颗行星的运动情况的方法一样.卫星本身的大小、形状与其运动快慢无关.筛选所给的信息,其重要信息是卫星离土星的距离.设卫星运动轨道是圆形的,且是匀速圆周运动,根据开普勒第三定律:轨道半径的三次方与公转周期的二次方的比值相等,则A正确;土卫六的周期较大,则由匀速圆周运动的知识ω=,得土卫六的角速度较小,故B错误;根据匀速圆周运动向心加速度公式a=ω2r=2r及开普勒第三定律=k,得a=r=4π2·k·,可知半径大的向心加速度小,故C正确;由于v==2π=2π ,轨道半径小的卫星,其运动速度大,故D正确.
14.地球到太阳的距离为水星到太阳距离的2.6倍,那么地球和水星绕太阳运转的线速度之比是多少?(假设地球和水星绕太阳运转的轨道是圆)
解析:设地球绕太阳运转的周期为T1,水星绕太阳运转的周期为T2,根据开普勒第三定律得.因为地球和水星都绕太阳做匀速圆周运动,故T1=,T2=.以上三式联立解得:= = ≈0.62.
答案:0.62
15.地球的公转轨道接近圆,但彗星的运动轨道则是一个非常扁的椭圆,天文学家哈雷曾经在1682年跟踪过一颗彗星,他算出这颗彗星轨道的半长轴约等于地球轨道半径的18倍,并预言这颗彗星将每隔一定时间就会出现,哈雷的预言得到证实,该彗星被命名为哈雷彗星.哈雷彗星最近出现的时间是1986年,请你根据开普勒行星运动第三定律即=k,其中T为行星绕太阳公转的周期,r为轨道的半长轴估算它下次飞近地球是哪一年?
解析:将地球的公转轨道近似成圆形轨道,其周期为T1,半径为r1;哈雷彗星的周期为T2,轨道半长轴为r2,则根据开普勒第三定律有:
因为r2=18r1,地球公转周期为1年,所以可知哈雷彗星的周期为T2=×T1=76.4年.
所以它下次飞近地球是在2062年.
答案:2062年
PAGE
1