【专题讲义】北师大版八年级数学下册 第12讲 分式方程的应用专题精讲(提高版+解析版)

文档属性

名称 【专题讲义】北师大版八年级数学下册 第12讲 分式方程的应用专题精讲(提高版+解析版)
格式 zip
文件大小 4.0MB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2020-03-04 19:30:45

文档简介

中小学教育资源及组卷应用平台
【专题讲义】北师大版八年级数学下册
第12讲 分式方程的应用专题精讲(提高版)
温故知新
一.解分式方程的步骤:
(1)去分母,即在方程两边同时乘以最简公分母,把原方程化为整式方程;
(2)解这个整式方程;
(3)验根:把整式方程的根代入最简公分母中,使最简公分母不等于的根是原方程的根,否则,便是增根,必须舍去
二.解下列关于方程:
(1); (2)。
课堂导入
列方程解应用题的一般步骤:
审题:就是弄清题意,弄明白哪些量是已知的,哪些量是未知的,要求的量是什么。
设未知数:在题目中一般设欲求的量为x,这种设法叫直接设未知数;有时为了列方程简便,也常常设其他的量为x,这种设法叫间接设未知数法。
列方程:根据题目的实际意义找出等量关系,并把这个等量关系用已知数与未知数表示出来,这就是列方程。
解方程并求出未知数的值,分式方程一定验根。
检验:这里的检验有两重含义,一是检验解方程是否正确,二是检验所解出的根是否符合题意。
知识要点一
【行程问题】
●基本量及关系:路程=速度×时间
时间=
【典型问题】
●相遇问题中的相等关系:
一个的行程+另一个的行程=两者之间的距离
●追及问题中的相等关系:
追及者的行程-被追者的行程=相距的路程
典例分析
例1.甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h,比普通快车早4h到达乙地,求两车的平均速度.
分析:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程= 速度×时间,应根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等.
例2.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.
(1)求普通列车的行驶路程;
(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.
举一反三
一队学生去校外参观.他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍行进速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?
 
2.农机厂职工到距工厂15千米的生产队检修农机,一部分人骑自行车先走,40分钟后,其余的人乘汽车出发,结果他们同时到达,已知汽车的速度是自行车的3倍,求两车的速度.
 
知识要点二
【工程问题】
●基本量及关系:
工作总量=工作效率×工作时间
典例分析
例1.某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天? 
 
例2.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
举一反三
1.甲乙两人做某种机器零件。已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等。求甲、乙每小时各做多少个?
2:今年某大学在招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位教师向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知教师甲的输入速度是教师乙的2倍,结果甲比乙少用2小时输完.问这两位教师每分钟各能输入多少名学生的成绩?
知识要点三
【打折销售的有关概念及公式】
(1)打m折的含义
打m折就是按标价的10m%销售。例如:某件服装标价100元。为了扩大销售量,打九折销售,即按标价100元的 %,即 元销售。
(2)利润、售价、进价的关系
商品利润= -
例如:某商品的进价是1500元,售价是1680元,则利润为
售价=成本价+ =成本价( + )
(3)利润率的求法
典例分析
例1 .某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每千克少3元,比乙种原料每千克多1元,问混合后的单价每千克是多少元?
例2.兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.
(1)第一批该款式T恤衫每件进价是多少元?
(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)
举一反三
1.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。
(1)求第一批购进书包的单价是多少元?
(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?
2.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.
(1)求第一次每支铅笔的进价是多少元?
(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?
知识要点四
【特殊类型】
轮船顺逆水应用问题
航行问题是行程问题中的一种特殊情况,其速度在不同的条件下会发生变化;
①顺水(风)速度=静水(无风)速度+水流速度(风速);
②逆水(风)速度=静水(无风)速度—水流速度(风速)
2.其他应用性问题
典例分析
例1.轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度。
例2.要在15%的盐水40千克中加入多少盐才能使盐水的浓度变为20%.
举一反三
1.某大商场家电部送货人员与销售人员人数之比1:8,今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货,结果送货人员与销售人员人数之比位2:5.求这个商场家电部原来各有多少名送货和销售人员?
2.轮船顺水航行80千米所需的时间和逆水航行60千米所需的时间相同,已知船在静水中的速度是21千米/小时,求水流的速度?
课堂闯关
初出茅庐
建议用时:10分钟
1.甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( )
A.6天 B.4天 C.3天 D.2天
2.炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是( )
A. B. C. D.
3.有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜kg,根据题意,可得方程( )
A. B.
C. D.
4.温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).
5.某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.
6.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.
7.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:
优学学霸
建议用时:15分钟
1.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.
(1)求第一批购进书包的单价是多少元?
(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?
2.甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲、乙 共同整理20分钟后,乙需再单独整理20分钟才能完工.
(1)问乙单独整理多少分钟完工?
(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?
3.“六 一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.
(1)求第一批玩具每套的进价是多少元?
(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?
 
考场直播
1.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
自我挑战
建议用时:30分钟
1.甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的,求甲、乙两个施工队单独完成此项工程各需多少天?
2.南水北调东线工程已经开工,某施工单位准备对运河一段长2240m的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤m,则得方程为 .
3.某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了,但售价未变,从而使超市销售这种计算器的利润提高了.这种计算器原来每个进价是多少元?(利润售价进价,利润率)
4.今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?
5.某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?
6.甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.
7.某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的倍;甲、乙两队合作完成工程需要天;甲队每天的工作费用为元、乙队每天的工作费用为元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?
8.A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?
我们加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍.
你们是用9天完成4800米长的大坝加固任务的
通过这段对话,请你求出该地驻军原来每天加固的米数.
PAGE
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
页 1中小学教育资源及组卷应用平台
【专题讲义】北师大版七年级数学下册
第12讲 分式方程的应用专题精讲(解析版)
参考答案
一.解下列关于方程:
(1); (2)。
【解析】,(增根)
典例分析
例1.甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h,比普通快车早4h到达乙地,求两车的平均速度.
分析:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程= 速度×时间,应根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等.
解:设普通快车车的平均速度为km/h,则直达快车的平均速度为1.5km/h,依题意,得
=,解得,
经检验,是方程的根,且符合题意.
∴,,
即普通快车车的平均速度为46km/h,直达快车的平均速度为69km/h.
例2.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.
(1)求普通列车的行驶路程;
(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.
【分析】(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可得出答案;
(2)设普通列车平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可;
【解答】解:(1)根据题意得:
400×1.3=520(千米),
答:普通列车的行驶路程是520千米;
(2)设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:
﹣=3,
解得:x=120,
经检验x=120是原方程的解,
则高铁的平均速度是120×2.5=300(千米/时),
答:高铁的平均速度是300千米/时.
举一反三
1.一队学生去校外参观.他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍行进速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?
 
解: 设步行速度为x千米/时,骑车速度为2x千米/时,依题意,得:   
     
     方程两边都乘以2x,去分母,得  
     30-15=x,  所以,x=15.  
     检验:当x=15时,2x=2×15≠0,
     所以x=15是原分式方程的根,并且符合题意.
     ∵,∴骑车追上队伍所用的时间为30分钟.
2.农机厂职工到距工厂15千米的生产队检修农机,一部分人骑自行车先走,40分钟后,其余的人乘汽车出发,结果他们同时到达,已知汽车的速度是自行车的3倍,求两车的速度.
  解: 设自行车的速度为x千米/小时,那么汽车的速度为3x千米/小时,依题意,得:
     解得 x=15.
    经检验x=15是这个方程的解.
    当x=15时,3x=45.
    即自行车的速度是15千米/小时,汽车的速度为45千米/小时.
典例分析
例1.某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天? 
 解: 工程规定日期就是甲单独完成工程所需天数,设为x天,
    那么乙单独完成工程所需的天数就是(x+3)天.
    设工程总量为1,甲的工作效率就是,乙的工作效率是,依题意,得
    ,解得 .
    即规定日期是6天.
例2.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
【分析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;
(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.
【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:
﹣=4,
解得:x=50,
经检验x=50是原方程的解,
则甲工程队每天能完成绿化的面积是50×2=100(m2),
答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;
(2)设应安排甲队工作y天,根据题意得:
0.4y+×0.25≤8,
解得:y≥10,
答:至少应安排甲队工作10天.
举一反三
1.甲乙两人做某种机器零件。已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等。求甲、乙每小时各做多少个?
分析:甲每小时做x个零件,做90个零件所用的时间是(90 ÷x) 小时,还可用式子 小时来表示。乙每小时做(x-6)个零件,做60个零件所用的时间是 [60÷(x-6)] 小时,还可用式子 小时来表示。
等量关系:甲所用时间=乙所用时间
= 解得:x=18
答:甲每小时做18个,乙每小时做12个
2:今年某大学在招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位教师向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知教师甲的输入速度是教师乙的2倍,结果甲比乙少用2小时输完.问这两位教师每分钟各能输入多少名学生的成绩?
解: 设教师乙每分钟能输入x名学生的成绩,则教师甲每分钟能输入2x名学生的成绩,
   依题意,得:
    , 解得 x=11
   经检验,x=11是原方程的解,且当x=11时,2x=22,符合题意.
答:教师甲每分钟能输入22名学生的成绩,教师乙每分钟能输入11名学生的成绩.
典例分析
例1 .某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每千克少3元,比乙种原料每千克多1元,问混合后的单价每千克是多少元?
解:设混合后的单价为每千克 元,则甲种原料的单价为每千克元,混合后的总价值为(2000+4800)元,混合后的重量为斤,甲种原料的重量为,乙种原料的重量为,依题意,得:
+=,解得,
经检验,是原方程的根,所以.
即混合后的单价为每千克17元.
例2.兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.
(1)第一批该款式T恤衫每件进价是多少元?
(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)
【分析】(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进的件数可得方程;
(2)设剩余的T恤衫每件售价y元,由利润=售价﹣进价,根据第二批的销售利润不低于650元,可列不等式求解.
【解答】解:(1)设第一批T恤衫每件进价是x元,由题意,得
=,
解得x=90,
经检验x=90是分式方程的解,符合题意.
答:第一批T恤衫每件的进价是90元;
(2)设剩余的T恤衫每件售价y元.
由(1)知,第二批购进=50(件).
由题意,得120×50×+y×50×﹣4950≥650,
解得y≥80.
答:剩余的T恤衫每件售价至少要80元.
举一反三
1.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。
(1)求第一批购进书包的单价是多少元?
(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?
解:(1)设第一批购进书包的单价是x元
则:×3=
解得:x=80
经检验:x=80是原方程的根
答:第一批购进书包的单价是80元.
(2)×(120﹣80)+×(120﹣84)=3700(元)
答:商店共盈利3700元。
2.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.
(1)求第一次每支铅笔的进价是多少元?
(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?
【分析】(1)设第一次每支铅笔进价为x元,则第二次每支铅笔进价为x元,根据题意可列出分式方程解答;
(2)设售价为y元,求出利润表达式,然后列不等式解答.
【解答】解:(1)设第一次每支铅笔进价为x元,
根据题意列方程得,﹣=30,
解得x=4,
经检验:x=4是原分式方程的解.
答:第一次每支铅笔的进价为4元.
(2)设售价为y元,第一次每支铅笔的进价为4元,则第二次每支铅笔的进价为4×=5元
根据题意列不等式为:
×(y﹣4)+×(y﹣5)≥420,
解得y≥6.
答:每支售价至少是6元.
典例分析
例1.轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度。
分析:此题的等量关系很明显:顺水航行30千米的时间= 逆水中航行20千米的时间,即=.设船在静水中的速度为千米/时,又知水流速度,于是顺水航行速度、逆水航行速度可用未知数表示,问题可解决.
解: 设船在静水中速度为千米/时,则顺水航行速度为千米/时,逆水航行速度为千米/时,依题意,得
=,解得.
经检验,是所列方程的根.
即船在静水中的速度是10千米/时.
例2.要在15%的盐水40千克中加入多少盐才能使盐水的浓度变为20%.
分析:设加入盐千克.浓度问题的基本关系是:=浓度.
溶液 溶质 浓度
加盐前 40 40×15% 15%
加盐后 40+ 40×15%+ 20%
解:设应加入盐千克,依题意,得=.
100(40×15%+) = 20(40+),解得.
经检验,是所列方程的根,即加入盐2.5千克.
举一反三
1.某大商场家电部送货人员与销售人员人数之比1:8,今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货,结果送货人员与销售人员人数之比位2:5.求这个商场家电部原来各有多少名送货和销售人员?
解:设这个商场家电 ( https: / / www. / s wd=%E5%AE%B6%E7%94%B5&tn=44039180_cpr&fenlei=mv6quAkxTZn0IZRqIHckPjm4nH00T1Y4nHnsmym1uH6LPH9bP1Dk0AP8IA3qPjfsn1bkrjKxmLKz0ZNzUjdCIZwsrBtEXh9GuA7EQhF9pywdQhPEUiqkIyN1IA-EUBt1njRzP1cvPWDdrH6kPHnzrjf" \t "http: / / zhidao. / _blank )部原有x名送货人员,则销售人员有8x名,
根据题意得

解得x=14.
经检验x=14是原方程的解.
所以8x=112.
答:原有14名送货人员,112名销售人员.
2.轮船顺水航行80千米所需的时间和逆水航行60千米所需的时间相同,已知船在静水中的速度是21千米/小时,求水流的速度?
解:设水流的速度为x千米/小时,根据题意得:
解得:x=3
答:水流速度是3千米/小时
课堂闯关
初出茅庐
建议用时:10分钟
1.甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( D )
A.6天 B.4天 C.3天 D.2天
2.炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是( D )
A. B. C. D.
3.有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜kg,根据题意,可得方程( C )
A. B.
C. D.
4.温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).
解:设通车后火车从福州直达温州所用的时间为小时.
依题意,得.
解这个方程,得.
经检验是原方程的解.

5.某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.
解:设每盒粽子的进价为x元,由题意得
20%x×50(50)×5350    
化简得x210x12000
解方程得x140,x230(不合题意舍去)
经检验,x140,x230都是原方程的解,
但x230不合题意,舍去.
答: 每盒粽子的进价为40元.
6.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.
解:设张明平均每分钟清点图书本,则李强平均每分钟清点本,
依题意,得. 3分
解得.
经检验是原方程的解.
答:张明平均每分钟清点图书20本. 5分
注:此题将方程列为或其变式,同样得分
7.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:
解:设原来每天加固x米,根据题意,得

去分母,得 1200+4200=18x(或18x=5400)
解得 .
检验:当时,(或分母不等于0).
∴是原方程的解.
答:该地驻军原来每天加固300米.
优学学霸
建议用时:15分钟
1.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.
(1)求第一批购进书包的单价是多少元?
(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?
【分析】(1)求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:“数量是第一批购进数量的3倍”;等量关系为:6300元购买的数量=2000元购买的数量×3.
(2)盈利=总售价﹣总进价.
【解答】解:(1)设第一批购进书包的单价是x元.
则:×3=.
解得:x=80.
经检验:x=80是原方程的根.
答:第一批购进书包的单价是80元.
(2)×(120﹣80)+×(120﹣84)=3700(元).
答:商店共盈利3700元. 
2.甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲、乙 共同整理20分钟后,乙需再单独整理20分钟才能完工.
(1)问乙单独整理多少分钟完工?
(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?
【分析】(1)将总的工作量看作单位1,根据本工作分两段时间完成列出分式方程解之即可;
(2)设甲整理y分钟完工,根据整理时间不超过30分钟,列出一次不等式解之即可.
【解答】解:(1)设乙单独整理x分钟完工,根据题意得:

解得x=80,
经检验x=80是原分式方程的解.
答:乙单独整理80分钟完工.
(2)设甲整理y分钟完工,根据题意,得
,解得:y≥25,
答:甲至少整理25分钟完工. 
3.“六 一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.
(1)求第一批玩具每套的进价是多少元?
(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?
【分析】(1)设第一批玩具每套的进价是x元,则第一批进的件数是:,第二批进的件数是:,再根据等量关系:第二批进的件数=第一批进的件数×1.5可得方程;
(2)设每套售价是y元,利润=售价﹣进价,根据这两批玩具每套售价相同,且全部售完后总利润不低于25%,可列不等式求解.
【解答】解:(1)设第一批玩具每套的进价是x元,
×1.5=,
x=50,
经检验x=50是分式方程的解,符合题意.
答:第一批玩具每套的进价是50元;
(2)设每套售价是y元,
×1.5=75(套).
50y+75y﹣2500﹣4500≥(2500+4500)×25%,
y≥70,
答:如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是70元.
考场直播
1.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.
(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.
【解答】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,
=
x=15,
经检验x=15是原方程的解.
∴40﹣x=25.
甲,乙两种玩具分别是15元/件,25元/件;
(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,

解得20≤y<24.
因为y是整数,甲种玩具的件数少于乙种玩具的件数,
∴y取20,21,22,23,共有4种方案.
自我挑战
建议用时:30分钟
1.甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的,求甲、乙两个施工队单独完成此项工程各需多少天?
解:设甲施工队单独完成此项工程需x天,
则乙施工队单独完成此项工程需x天,  
根据题意,得 +=1  
解这个方程,得x=25  
经检验,x=25是所列方程的根
2.南水北调东线工程已经开工,某施工单位准备对运河一段长2240m的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤m,则得方程为.
3.某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了,但售价未变,从而使超市销售这种计算器的利润提高了.这种计算器原来每个进价是多少元?(利润售价进价,利润率)
解:设这种计算器原来每个的进价为元, 1分
根据题意,得. 5分
解这个方程,得. 8分
经检验,是原方程的根. 9分
答:这种计算器原来每个的进价是40元. 10分
4.今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?
解:设第五次提速后的平均速度是x公里/时,
则第六次提速后的平均速度是(x+40)公里/时.根据题意,得:
-=,
去分母,整理得:x2+40x-32000=0,
解之,得:x1=160,x2=-200,
经检验,x1=160,x2=-200都是原方程的解,
但x2=-200<0,不合题意,舍去.
∴x=160,x+40=200.
答:第五次提速后的平均时速为160公里/时,
第六次提速后的平均时速为200公里/时.
5.某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?
解:设第一次购书的进价为元,则第二次购书的进价为元.根据题意得:
解得:
经检验是原方程的解
所以第一次购书为(本).
第二次购书为(本)
第一次赚钱为(元)
第二次赚钱为(元)
所以两次共赚钱(元)
答:该老板两次售书总体上是赚钱了,共赚了520元.
6.甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.
解法一:设列车提速前的速度为千米/时,则提速后的速度为千米/时,根据题意,得. 4分
解这个方程,得. 5分
经检验,是所列方程的根. 6分
(千米/时).
所以,列车提速后的速度为256千米/时. 7分
解法二: 设列车提速后从甲站到乙站所需时间为小时,
则提速前列车从甲站到乙站所需时间为小时,根据题意,得..
则 列车提速后的速度为=256(千米/时)
答:列车提速后的速度为256千米/时.
7.某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的倍;甲、乙两队合作完成工程需要天;甲队每天的工作费用为元、乙队每天的工作费用为元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?
解:设甲队单独完成需天,则乙队单独完成需要天.根据题意得 

    解得  .
    经检验是原方程的解,且,都符合题意.
    应付甲队(元).
    应付乙队(元).
    公司应选择甲工程队,应付工程总费用元.
8.A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?
解:设甲工程队每周铺设管道公里,
则乙工程队每周铺设管道()公里
根据题意, 得
解得,
经检验,都是原方程的根
但不符合题意,舍去

答: 甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里
我们加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍.
你们是用9天完成4800米长的大坝加固任务的
通过这段对话,请你求出该地驻军原来每天加固的米数.
PAGE
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
页 1