中小学教育资源及组卷应用平台
【专题讲义】备战2020中考总复习精编重难点
第10讲 平面直角坐标系及函数初步(提高版)
【学生版】
【考点1 平面直角坐标系及点的坐标】
1.有序实数对:坐标平面上任意一点都可以用唯一一对有序实数来表示;反过来,任意一对有序实数都可以表示坐标平面上唯一一个点.
2.平面直角坐标系中点的坐标特征
(1)各象限点的坐标的符号特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)
(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0,y轴上的点的横坐标为0,原点的坐标为(0,0)
(3)各象限角平分线上点的坐标特征:第一、三象限角平分线上的横、纵坐标相等;第二、四象限角平分线上的横、纵坐标互为相反数
【考点2 函数的表示方法及其图像】
1.变量:在一个变化过程中,可以取不同数值的量叫做变量.
2.常量:在一个变化过程中,数值保持不变的量叫做常量.
3.函数:一般地,在某个变化过程中,有两个变量x和y.如果给定x的一个值,就能相应地确定y的一个值,那么,我们就说y是x的函数.其中,x叫做自变量.
4.函数的表示方法:数值表、图像、表达式是函数关系的三种不同表达形式,它们分别表现出具体、形象直观和便于抽象应用的特点.
5.图像的画法:知道函数的表达式,一般用描点法按下列步骤画出函数的图像.
(1)取值.根据函数的表达式,取自变量的一些值,得出函数的对应值,按这些对应值列表;
(2)描点.根据自变量和函数的数值表,在直角坐标系中描点;
(3)连线.用平滑的曲线将这些点连接起来,即得到函数的图像.
6.已知函数表达式,判断点P(x,y)是否在函数图像上的方法:若点P(x,y)的坐标适合函数表达式,则点P(x,y)在其图像上;若点P(x,y)的坐标不适合函数表达式,则点P(x,y)不在其图像上.
【考点1 平面直角坐标系及点的坐标】
【解题技巧】1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.一般地,点P(a,b)到x轴的距离为|b|,到y轴的距离为|a|,到原点的距离为.
2、由图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.
3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.
【例1】(2019 海南中考)如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为( )
A.(﹣1,﹣1) B.(1,0) C.(﹣1,0) D.(3,0)
【举一反三1-1】(2019 湖北黄石中考)如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B'的坐标是( )
A.(﹣1,2) B.(1,4) C.(3,2) D.(﹣1,0)
【举一反三1-2】(2019湖北孝感中考)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为( )
A.(3,2) B.(3,﹣1) C.(2,﹣3) D.(3,﹣2)
【举一反三1-3】(2019浙江杭州中考)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )
A.m=3,n=2 B.m=﹣3,n=2 C.m=2,n=3 D.m=﹣2,n=﹣3
【考点2 函数的表示方法及其图像】
【解题技巧】判断符合题意的函数图像的方法
与实际问题结合:判断符合实际问题的函数图像时,需遵循以下几点:
①找起点:结合题干中所给自变量及因变量的取值范围,对应到图像中找相对应点;②找特殊点:即指交点或转折点,说明图像在此点处将发生变化;③判断图像趋势:判断出函数的增减性;④看是否与坐标轴相交:即此时另外一个量为0.
(2)与几何图形(含动点)结合:以几何图形为背景判断函数图像的题目,一般的解题思路为设时间为t,找因变量与t之间存在的函数关系,用含t的式子表示,再找相对应的函数图像,要注意的是是否需要分类讨论自变量的取值范围.
(3)分析函数图像判断结论正误:分清图像的横纵坐标代表的量及函数中自变量的取值范围,同时也要注意:①分段函数要分段讨论;②转折点:判断函数图像的倾斜方向或增减性发生变化的关键点;③平行线:函数值随自变量的增大而保持不变.再结合题干推导出实际问题的运动过程,从而判断结论的正误.
【例2】(2019 湖北孝感中考)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是( )
A. B.
C. D.
【举一反三2-1】(2019 辽宁大连中考)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为( )
A.(3,﹣1) B.(3,3) C.(1,1) D.(5,1)
【举一反三2-2】(2019 上海中考)下列函数中,函数值y随自变量x的值增大而增大的是( )
A.y= B.y=﹣ C.y= D.y=﹣
【举一反三2-3】(2019 北京中考)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.
小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:
(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:
位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8
PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83
PD/cm 3.44 2.69 2.00 1.36 0.96 1.13 2.00 2.83
AD/cm 0.00 0.78 1.54 2.30 3.01 4.00 5.11 6.00
在PC,PD,AD的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;
(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 cm.
(一)选择题
1.(2019?日照)如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为( )
A.(﹣1008,0) B.(﹣1006,0) C.(2,﹣504) D.(1,505)
2.(2019?青海)大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x,水位高度变量为y,下列图象中最符合故事情景的大致图象是( )
A. B.
C. D.
3.(2019?呼和浩特)已知正方形的对称中心在坐标原点,顶点A、B、C、D按逆时针依次排列,若A点的坐标为(2,),则B点与D点的坐标分别为( )
A.(﹣2,),(2,﹣) B.(﹣,2),(,﹣2)
C.(﹣,2),(2,﹣) D.(,)()
4.(2019?兰州)如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(﹣3,5),B(﹣4,3),A1(3,3),则B1的坐标为( )
A.(1,2) B.(2,1) C.(1,4) D.(4,1)
5.(2019?威海)如图,⊙P与x轴交于点A(﹣5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点C的纵坐标为( )
A.+ B.2+ C.4 D.2+2
6.(2019?武汉)“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用x表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是( )
A. B.
C. D.
7.(2019?南通)如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是( )
A.25min~50min,王阿姨步行的路程为800m
B.线段CD的函数解析式为s=32t+400(25≤t≤50)
C.5min~20min,王阿姨步行速度由慢到快
D.曲线段AB的函数解析式为s=﹣3(t﹣20)2+1200(5≤t≤20)
8.(2019?台湾)如图的坐标平面上有原点O与A、B、C、D四点.若有一直线L通过点(﹣3,4)且与y轴垂直,则L也会通过下列哪一点?( )
A.A B.B C.C D.D
填空题
1.(2019 上海中考)已知f(x)=x2﹣1,那么f(﹣1)= .
(2019?日照)规定:在平面直角坐标系xOy中,如果点P的坐标为(a,b),那么向量可以表示为:=(a,b),如果与互相垂直,=(x1,y1),=(x2,y2),那么x1x2+y1y2=0.若与互相垂直,=(sinα,1),=(2,﹣),则锐角∠α= .
3.(2019?哈尔滨)在函数y=中,自变量x的取值范围是 .
4.(2019?成都)如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点为“整点”,已知点A的坐标为(5,0),点B在x轴的上方,△OAB的面积为,则△OAB内部(不含边界)的整点的个数为 .
5.(2019河北石家庄中考模拟)已知点P(0,m)在y轴的负半轴上,则点M(-m,-m+1)在 .
6.(2019山东济南中考模拟)在函数y=中,自变量x的取值范围是 .
7.(2019 山东德州中考模拟)如图:在平面直角坐标系中有两点A(﹣5,0),B(0,4),则AB= .
8.(2019 河北沧州中考模拟)如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将OA2B2变换成△OA3B3;已知变换过程中各点坐标分别为A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).
(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为 ,B4的坐标为 .
(2)按以上规律将△OAB进行n次变换得到△OAnBn,则An的坐标为 ,Bn的坐标为 ;
(3)△OAnBn的面积为 .
解答题
1.(2019湖北黄石中考模拟)已知:点P(2m+4,m﹣1).试分别根据下列条件,求出P点的坐标.
(1)点P在y轴上;
(2)点P的纵坐标比横坐标大3;
(3)点P在过A(2,﹣4)点且与x轴平行的直线上.
2.(2019湖北黄石中考模拟)如图,在平面直角坐标系中,点A,B的坐标分别是(2,0),(0,2)
(1)请在图中描出点A,B,注明字母.
(2)若点C在第一象限内,且AC=BC,∠BCA<90°,点C的横纵坐标均为正数.
①请在图中描出点C,并画出△ABC;
②填空:△ABC的周长是 ,AC边上的高长为 .
3.(2019河北张家口中考模拟)在平面直角坐标系中,点P(2﹣m,3m+6).
(1)若点P在y轴上,则m= .
(2)若点P到y轴距离为2,则m= .
(3)若点P到两坐标轴的距离相等,m= .
4.(2019山东青岛中考模拟)如图格中每个小正方形的边长都是1,依次完成下列各问:
(1)任选一点作为原点,建立平面直角坐标系;
(2)写出A、B、C、D、E各点的坐标;
(3)求五边形ABCDE的面积.
5.(2019辽宁营口中考模拟)甲车从A地出发匀速驶往B地,同时乙车从B地出发匀速驶往A地.如图表示甲、乙两车在全程行驶的过程中,离各自出发地的路程y(千米)与出发时间x(时)的函数图象.
(1)A、B两地相距 千米;甲车的速度为 千米/时;
(2)当乙车距A地的路程为A、B两地距离的时,甲车刚好行驶80千米.求此时乙车到达A地还需行驶多长时间.
6.(2019?兰州)如图,在△ABC中,AB=AC=6cm,BC=8cm,点D为BC的中点,BE=DE,将∠BDE绕点D顺时针旋转α度(0≤α≤83°),角的两边分别交直线AB于M、N两点,设B、M两点间的距离为xcm,M,N两点间的距离为ycm.
小涛根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小涛的探究过程,请补充完整.
(1)列表:下表的已知数据是B,M两点间的距离x进行取点、画图、测量,分别得到了y与x的几组对应值:
x/m 0 0.30 0.50 1.00 1.50 2.00 2.50 3.00 3.50 3.68 3.81 3.90 3.93 4.10
y/m 2.88 2.81 2.69 2.67 2.80 3.15 3.85 5.24 6.01 6.71 7.27 7.44 8.87
请你通过计算,补全表格;
(2)描点、连线,在平面直角坐标系xOy中,描出表格中各组数值所对应的点(x,y),并画出函数y关于x的图象.
(3)探究性质:随着自变量x的不断增大,函数y的变化趋势: .
(4)解决问题:当MN=2BM时,BM的长度大约是 cm.(保留两位小数).
7.(2019 天津中考)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.
(Ⅰ)如图①,求点E的坐标;
(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.
①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;
②当≤S≤5时,求t的取值范围(直接写出结果即可).
8.(2019 江西中考)数学活动课上,张老师引导同学进行如下探究:
如图1,将长为12cm的铅笔AB斜靠在垂直于水平桌面AE的直尺FO的边沿上,一端A固定在桌面上,图2是示意图.
活动一
如图3,将铅笔AB绕端点A顺时针旋转,AB与OF交于点D,当旋转至水平位置时,铅笔AB的中点C与点O重合.
数学思考
(1)设CD=xcm,点B到OF的距离GB=ycm.
①用含x的代数式表示:AD的长是 cm,BD的长是 cm;
②y与x的函数关系式是 ,自变量x的取值范围是 .
活动二
(2)①列表:根据(1)中所求函数关系式计算并补全表格
x(cm) 6 5 4 3.5 3 2.5 2 1 0.5 0
y(cm) 0 0.55 1.2 1.58 2.47 3 4.29 5.08
②描点:根据表中数值,继续描出①中剩余的两个点(x,y).
③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.
数学思考
(3)请你结合函数的图象,写出该函数的两条性质或结论.
PAGE
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
页 1
中小学教育资源及组卷应用平台
【专题讲义】备战2020中考总复习精编重难点
第10讲 平面直角坐标系及函数初步(解析版)
【教师版】
一、考点知识梳理
【考点1 平面直角坐标系及点的坐标】
1.有序实数对:坐标平面上任意一点都可以用唯一一对有序实数来表示;反过来,任意一对有序实数都可以表示坐标平面上唯一一个点.
2.平面直角坐标系中点的坐标特征
(1)各象限点的坐标的符号特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)
(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0,y轴上的点的横坐标为0,原点的坐标为(0,0)
(3)各象限角平分线上点的坐标特征:第一、三象限角平分线上的横、纵坐标相等;第二、四象限角平分线上的横、纵坐标互为相反数
【考点2 函数的表示方法及其图像】
1.变量:在一个变化过程中,可以取不同数值的量叫做变量.
2.常量:在一个变化过程中,数值保持不变的量叫做常量.
3.函数:一般地,在某个变化过程中,有两个变量x和y.如果给定x的一个值,就能相应地确定y的一个值,那么,我们就说y是x的函数.其中,x叫做自变量.
4.函数的表示方法:数值表、图像、表达式是函数关系的三种不同表达形式,它们分别表现出具体、形象直观和便于抽象应用的特点.
5.图像的画法:知道函数的表达式,一般用描点法按下列步骤画出函数的图像.
(1)取值.根据函数的表达式,取自变量的一些值,得出函数的对应值,按这些对应值列表;
(2)描点.根据自变量和函数的数值表,在直角坐标系中描点;
(3)连线.用平滑的曲线将这些点连接起来,即得到函数的图像.
6.已知函数表达式,判断点P(x,y)是否在函数图像上的方法:若点P(x,y)的坐标适合函数表达式,则点P(x,y)在其图像上;若点P(x,y)的坐标不适合函数表达式,则点P(x,y)不在其图像上.
二、考点分析
【考点1 平面直角坐标系及点的坐标】
【解题技巧】1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.一般地,点P(a,b)到x轴的距离为|b|,到y轴的距离为|a|,到原点的距离为.
2、由图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.
3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.
【例1】(2019 海南中考)如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为( )
A.(﹣1,﹣1) B.(1,0) C.(﹣1,0) D.(3,0)
【答案】C.
【分析】由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.
【解答】解:由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律是:左移4个单位,上移1个单位,
∴点B的对应点B1的坐标(﹣1,0).
故选:C.
【举一反三1-1】(2019 湖北黄石中考)如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B'的坐标是( )
A.(﹣1,2) B.(1,4) C.(3,2) D.(﹣1,0)
【答案】C.
【分析】根据旋转可得:CB'=CB=2,∠BCB'=90°,可得B'的坐标.
【解答】解:如图所示,
由旋转得:CB'=CB=2,∠BCB'=90°,
∵四边形ABCD是正方形,且O是AB的中点,
∴OB=1,
∴B'(2+1,2),即B'(3,2),
故选:C.
【举一反三1-2】(2019湖北孝感中考)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为( )
A.(3,2) B.(3,﹣1) C.(2,﹣3) D.(3,﹣2)
【答案】D.
【分析】作PQ⊥y轴于Q,如图,把点P(2,3)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,从而可确定P′点的坐标.
【解答】解:作PQ⊥y轴于Q,如图,
∵P(2,3),
∴PQ=2,OQ=3,
∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,
∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,
∴点P′的坐标为(3,﹣2).
故选:D.
【举一反三1-3】(2019浙江杭州中考)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )
A.m=3,n=2 B.m=﹣3,n=2 C.m=2,n=3 D.m=﹣2,n=﹣3
【答案】B.
【分析】直接利用关于y轴对称点的性质得出答案.
【解答】解:∵点A(m,2)与点B(3,n)关于y轴对称,
∴m=﹣3,n=2.
故选:B.
【考点2 函数的表示方法及其图像】
【解题技巧】判断符合题意的函数图像的方法
与实际问题结合:判断符合实际问题的函数图像时,需遵循以下几点:
①找起点:结合题干中所给自变量及因变量的取值范围,对应到图像中找相对应点;②找特殊点:即指交点或转折点,说明图像在此点处将发生变化;③判断图像趋势:判断出函数的增减性;④看是否与坐标轴相交:即此时另外一个量为0.
(2)与几何图形(含动点)结合:以几何图形为背景判断函数图像的题目,一般的解题思路为设时间为t,找因变量与t之间存在的函数关系,用含t的式子表示,再找相对应的函数图像,要注意的是是否需要分类讨论自变量的取值范围.
(3)分析函数图像判断结论正误:分清图像的横纵坐标代表的量及函数中自变量的取值范围,同时也要注意:①分段函数要分段讨论;②转折点:判断函数图像的倾斜方向或增减性发生变化的关键点;③平行线:函数值随自变量的增大而保持不变.再结合题干推导出实际问题的运动过程,从而判断结论的正误.
【例2】(2019 湖北孝感中考)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是( )
A. B.
C. D.
【答案】A.
【分析】根据实际问题结合四个选项确定正确的答案即可.
【解答】解:∵从某时刻开始4min内只进水不出水,容器内存水8L;
∴此时容器内的水量随时间的增加而增加,
∵随后的8min内既进水又出水,容器内存水12L,
∴此时水量继续增加,只是增速放缓,
∵接着关闭进水管直到容器内的水放完,
∴水量逐渐减少为0,
综上,A选项符合,
故选:A.
【举一反三2-1】(2019 辽宁大连中考)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为( )
A.(3,﹣1) B.(3,3) C.(1,1) D.(5,1)
【答案】A.
【分析】根据向下平移,横坐标不变、纵坐标相减列式计算即可得解.
【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),
故选:A.
【举一反三2-2】(2019 上海中考)下列函数中,函数值y随自变量x的值增大而增大的是( )
A.y= B.y=﹣ C.y= D.y=﹣
【答案】A.
【分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大.
【解答】解:A、该函数图象是直线,位于第一、三象限,y随x的增大而增大,故本选项正确.
B、该函数图象是直线,位于第二、四象限,y随x的增大而减小,故本选项错误.
C、该函数图象是双曲线,位于第一、三象限,在每一象限内,y随x的增大而减小,故本选项错误.
D、该函数图象是双曲线,位于第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.
故选:A.
【举一反三2-3】(2019 北京中考)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.
小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:
(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:
位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8
PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83
PD/cm 3.44 2.69 2.00 1.36 0.96 1.13 2.00 2.83
AD/cm 0.00 0.78 1.54 2.30 3.01 4.00 5.11 6.00
在PC,PD,AD的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;
(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 cm.
【答案】(1)AD、PC、PD;(2)略(3)AD的长度为2.3和4.0.
【分析】(1)按照变量的定义,根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量,即可求解;
(2)描点画出如图图象;
(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.
【解答】解:(1)根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量
故答案为:AD、PC、PD;
(2)描点画出如图图象;
(3)PC=2PD,
从图和表格可以看出位置4和位置6符合要求,
即AD的长度为2.3和4.0.
三、【达标测试】
(一)选择题
1.(2019?日照)如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为( )
A.(﹣1008,0) B.(﹣1006,0) C.(2,﹣504) D.(1,505)
【答案】A.
【分析】观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,由于2019÷4=504…3,A2019在x轴负半轴上,纵坐标为0,再根据横坐标变化找到规律即可解答.
【解答】解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,
∵2019÷4=504…3
∴A2019在x轴负半轴上,纵坐标为0,
∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,
∴A2019的横坐标为﹣(2019﹣3)×=﹣1008.
∴A2019的坐标为(﹣1008,0).
故选:A.
2.(2019?青海)大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x,水位高度变量为y,下列图象中最符合故事情景的大致图象是( )
A. B.
C. D.
【答案】D.
【分析】由于原来水位较低,乌鸦沉思一会后才想出办法,说明将在沉思的这段时间内水位没有变化,乌鸦衔来一个个小石子放入瓶中,水位将会上升,乌鸦喝水后的水位应不低于一开始的水位,由此即可作出判断.
【解答】解:∵乌鸦在沉思的这段时间内水位没有变化,
∴排除C,
∵乌鸦衔来一个个小石子放入瓶中,水位将会上升,
∴排除A,
∵乌鸦喝水后的水位应不低于一开始的水位,
∴排除B,
∴D正确.
故选:D.
3.(2019?呼和浩特)已知正方形的对称中心在坐标原点,顶点A、B、C、D按逆时针依次排列,若A点的坐标为(2,),则B点与D点的坐标分别为( )
A.(﹣2,),(2,﹣) B.(﹣,2),(,﹣2)
C.(﹣,2),(2,﹣) D.(,)()
【答案】B.
【分析】连接OA、OD,过点A作 AF⊥x轴于点F,过点D作DE⊥x轴于点E,易证△AFO≌△OED(AAS),则OE=AF=,DE=OF=2,D(,﹣2),因为B、D关于原点对称,所以B(﹣,2).
【解答】解:如图,连接OA、OD,过点A作 AF⊥x轴于点F,过点D作DE⊥x轴于点E,
易证△AFO≌△OED(AAS),
∴OE=AF=,DE=OF=2,
∴D(,﹣2),
∵B、D关于原点对称,
∴B(﹣,2),
故选:B.
4.(2019?兰州)如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(﹣3,5),B(﹣4,3),A1(3,3),则B1的坐标为( )
A.(1,2) B.(2,1) C.(1,4) D.(4,1)
【答案】B.
【分析】根据A和A1的坐标得出四边形ABCD先向下平移2个单位,再向右平移6个单位得到四边形A1B1C1D1,则B的平移方法与A点相同,即可得到答案.
【解答】解:由A(﹣3,5),A1(3,3)可知四边形ABCD先向下平移2个单位,再向右平移6个单位得到四边形A1B1C1D1,
∵B(﹣4,3),
∴B1的坐标为(2,1),
故选:B.
5.(2019?威海)如图,⊙P与x轴交于点A(﹣5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点C的纵坐标为( )
A.+ B.2+ C.4 D.2+2
【答案】B.
【分析】连接PA,PB,PC,过P作PD⊥AB于D,PE⊥OC于E,根据圆周角定理得到∠APB=120°,根据等腰三角形的性质得到∠PAB=∠PBA=30°,由垂径定理得到AD=BD=3,解直角三角形得到PD=,PA=PB=PC=2,根据勾股定理得到CE===2,于是得到结论.
【解答】解:连接PA,PB,PC,过P作PD⊥AB于D,PE⊥OC于E,
∵∠ACB=60°,
∴∠APB=120°,
∵PA=PB,
∴∠PAB=∠PBA=30°,
∵A(﹣5,0),B(1,0),
∴AB=6,
∴AD=BD=3,
∴PD=,PA=PB=PC=2,
∵PD⊥AB,PE⊥OC,∠AOC=90°,
∴四边形PEOD是矩形,
∴OE=PD=,PE=OD=2,
∴CE===2,
∴OC=CE+OE=2+,
∴点C的纵坐标为2+,
故选:B.
6.(2019?武汉)“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用x表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是( )
A. B.
C. D.
【答案】A.
【分析】根据题意,可知y随的增大而减小,符合一次函数图象,从而可以解答本题.
【解答】解:∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,x表示漏水时间,y表示壶底到水面的高度,
∴y随x的增大而减小,符合一次函数图象,
故选:A.
7.(2019?南通)如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是( )
A.25min~50min,王阿姨步行的路程为800m
B.线段CD的函数解析式为s=32t+400(25≤t≤50)
C.5min~20min,王阿姨步行速度由慢到快
D.曲线段AB的函数解析式为s=﹣3(t﹣20)2+1200(5≤t≤20)
【答案】C.
【分析】根据函数图象中的信息,利用数形结合及求相关线段的解析式解答即可.
【解答】解:A、25min~50min,王阿姨步行的路程为2000﹣1200=800m,故A没错;
B、设线段CD的函数解析式为s=kt+b,
把(25,1200),(50,2000)代入得,
解得:,
∴线段CD的函数解析式为s=32t+400(25≤t≤50),故B没错;
C、在A点的速度为=105m/min,在B点的速度为==45m/min,故C错误;
D、当t=20时,由图象可得s=1200m,将t=20代入s=﹣3(t﹣20)2+1200(5≤t≤20)得s=1200,故D没错.
故选:C.
8.(2019?台湾)如图的坐标平面上有原点O与A、B、C、D四点.若有一直线L通过点(﹣3,4)且与y轴垂直,则L也会通过下列哪一点?( )
A.A B.B C.C D.D
【答案】D.
【分析】直接利用点的坐标,正确结合坐标系分析即可.
【解答】解:如图所示:有一直线L通过点(﹣3,4)且与y轴垂直,故L也会通过D点.
故选:D.
填空题
1.(2019 上海中考)已知f(x)=x2﹣1,那么f(﹣1)= .
【答案】0.
【分析】根据自变量与函数值的对应关系,可得答案.
【解答】解:当x=﹣1时,f(﹣1)=(﹣1)2﹣1=0.
故答案为:0.
(2019?日照)规定:在平面直角坐标系xOy中,如果点P的坐标为(a,b),那么向量可以表示为:=(a,b),如果与互相垂直,=(x1,y1),=(x2,y2),那么x1x2+y1y2=0.若与互相垂直,=(sinα,1),=(2,﹣),则锐角∠α= .
【答案】60°.
【分析】根据平面向量垂直的判定方法得到:2sinα+1×(﹣)=0,结合特殊角的三角函数值解答.
【解答】解:依题意,得2sinα+1×(﹣)=0,
解得sinα=.
∵α是锐角,
∴α=60°.
故答案是:60°.
3.(2019?哈尔滨)在函数y=中,自变量x的取值范围是 .
【答案】x≠.
【分析】函数中分母不为零是函数y=有意义的条件,因此2x﹣3≠0即可;
【解答】解:函数y=中分母2x﹣3≠0,
∴x≠;
故答案为x≠;
4.(2019?成都)如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点为“整点”,已知点A的坐标为(5,0),点B在x轴的上方,△OAB的面积为,则△OAB内部(不含边界)的整点的个数为 .
【答案】4或5或6;
【分析】根据面积求出B点的纵坐标是3,结合平面直角坐标系,多画些图可以观察到整数点的情况;
【解答】解:设B(m,n),
∵B在x轴上方,
∴n>0,
∵点A的坐标为(5,0),
∴OA=5,
∵△OAB的面积=5?n=,
∴n=3,
∴B(m,3),
由图形的对称性,
设m≥,
①当m=5时,可得△OAB内部的整数点4个,
②当m≥且m≠5时,
OB的直线解析式y=x,
AB的直线解析式y=x﹣
设直线y=2与直线OB与直线AB分别交于点C,D,
∴C(,2),D(,2),
∴CD=,
∴△OAB内部(不含边界)直线y=2上的整点的个数为1或2,
同理可得,△OAB内部(不含边界)直线y=1上的整点的个数为3或4,
综上所述,△OAB内部(不含边界)的整点的个数为4或5或6.
故答案为4或5或6;
5.(2019河北石家庄中考模拟)已知点P(0,m)在y轴的负半轴上,则点M(-m,-m+1)在 .
【答案】第四象限
【分析】根据p点坐标的特点确定m的值,由m的值再确定-m和-m+1的符号,从而可以确定M在第几象限。
【解析】∵点P(0,m)在y轴的负半轴上
∴m<0
∴-m>0
∴-m+1>0
∴点M在第四象限
6.(2019山东济南中考模拟)在函数y=中,自变量x的取值范围是 .
【答案】x≥3且x≠4
【分析】本题主要考查了分式与二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式有意义的条件是分母不等于零.
【解析】由题意可知:x-3≥0且x-4≠0
∴x≥3且x≠4
∴答案是x≥3且x≠4
7.(2019 山东德州中考模拟)如图:在平面直角坐标系中有两点A(﹣5,0),B(0,4),则AB= .
【答案】
【分析】直接利用两点间的距离公式计算.
【解答】解:A,B两点的距离=
=.
8.(2019 河北沧州中考模拟)如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将OA2B2变换成△OA3B3;已知变换过程中各点坐标分别为A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).
(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为 ,B4的坐标为 .
(2)按以上规律将△OAB进行n次变换得到△OAnBn,则An的坐标为 ,Bn的坐标为 ;
(3)△OAnBn的面积为 .
【答案】(1)(16,3),(32,0).(2)(2n,3),(2n+1,0);(3)3×2n
【分析】(1)根据题目中的信息可以发现A1、A2、A3各点坐标的关系为横坐标是2n,纵坐标都是3,故可求得A4的坐标;B1、B2、B3各点的坐标的关系为横坐标是2n+1,纵坐标都为0,从而可求得点B4的坐标.
(2)根据(1)中发现的规律可以求得An、Bn点的坐标;
(3)依据An、Bn点的坐标,利用三角形面积计算公式,即可得到结论.
【解答】解:(1)∵A1(2,3)、A2(4,3)、A3(8,3).
∴A4的横坐标为:24=16,纵坐标为:3.
故点A4的坐标为:(16,3).
又∵B1(4,0)、B2(8,0)、B3(16,0).
∴B4的横坐标为:25=32,纵坐标为:0.
故点B4的坐标为:(32,0).
故答案为:(16,3),(32,0).
(2)由A1(2,3)、A2(4,3)、A3(8,3),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是3.
故An的坐标为:(2n,3).
由B1(4,0)、B2(8,0)、B3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.
故Bn的坐标为:(2n+1,0);
故答案为:(2n,3),(2n+1,0);
(3)∵An的坐标为:(2n,3),Bn的坐标为:(2n+1,0),
∴△OAnBn的面积为×2n+1×3=3×2n.
解答题
1.(2019湖北黄石中考模拟)已知:点P(2m+4,m﹣1).试分别根据下列条件,求出P点的坐标.
(1)点P在y轴上;
(2)点P的纵坐标比横坐标大3;
(3)点P在过A(2,﹣4)点且与x轴平行的直线上.
【分析】(1)直接利用y轴上点的坐标特点为横坐标为零,进而得出答案;
(2)利用点P的纵坐标比横坐标大3,进而得出答案;
(3)利用经过A(2,﹣4)且平行于x轴,则其纵坐标为﹣4,进而得出答案.
【解答】解:(1)∵点P(2m+4,m﹣1),点P在y轴上,
∴2m+4=0,
解得:m=﹣2,
则m﹣1=﹣3,
故P(0,﹣3);
(2)∵点P的纵坐标比横坐标大3,
∴m﹣1﹣(2m+4)=3,
解得:m=﹣8,
故P(﹣12,﹣9);
(3)∵点P在过A(2,﹣4)点且与x轴平行的直线上,
∴m﹣1=﹣4,
解得:m=﹣3,
∴2m+4=﹣2,
故P(﹣2,﹣4).
2.(2019湖北黄石中考模拟)如图,在平面直角坐标系中,点A,B的坐标分别是(2,0),(0,2)
(1)请在图中描出点A,B,注明字母.
(2)若点C在第一象限内,且AC=BC,∠BCA<90°,点C的横纵坐标均为正数.
①请在图中描出点C,并画出△ABC;
②填空:△ABC的周长是 ,AC边上的高长为 .
【分析】(1)根据点A、B的坐标即可得;
(2)根据等腰三角形的定义作图即可得;②利用勾股定理求得各边的长度,即可得三角形的周长;利用割补法求得△ABC的面积为4,由AC?h=4可得答案.
【解答】解:(1)如图所示,点A、B即为所求;
(2)①如图所示,△ABC即为所求;
②∵AB==2、AC==、BC==,
∴△ABC的周长为2+2;
∵△ABC的面积为3×3﹣×2×2﹣×1×3﹣×1×3=4,
∴AC?h=4,
则h===,
故答案为:2+2、.
3.(2019河北张家口中考模拟)在平面直角坐标系中,点P(2﹣m,3m+6).
(1)若点P在y轴上,则m= .
(2)若点P到y轴距离为2,则m= .
(3)若点P到两坐标轴的距离相等,m= .
【分析】(1)利用y轴点的坐标特征得到2﹣m=0,然后解方程即可;
(2)利用点的坐标的意义得到|2﹣m|=2,然后解绝对值方程即可;
(3)利用点的坐标的意义得到2﹣m=3m+6或2﹣m=﹣(3m+6),然后分别解两个方程即可.
【解答】解:(1)根据题意得2﹣m=0,解得m2;
(2)根据题意得|2﹣m|=2,解得m=0或4;
(3)2﹣m=3m+6或2﹣m=﹣(3m+6),
所以m=﹣1或﹣4.
故答案为2;0或4;﹣1或﹣4.
4.(2019山东青岛中考模拟)如图格中每个小正方形的边长都是1,依次完成下列各问:
(1)任选一点作为原点,建立平面直角坐标系;
(2)写出A、B、C、D、E各点的坐标;
(3)求五边形ABCDE的面积.
【分析】(1)根据坐标系的概念建立坐标系即可;
(2)由坐标系可得点的坐标;
(3)割补法求解即可.
【解答】解:(1)如图所示:
(2)A(0,2)、B(1,0)、C(3,0)、D(4,2)、E(3,3);
(3)S五边形ABCDE=3×4﹣×1×2﹣×1×2﹣×1×3﹣×1×1
=12﹣1﹣1﹣1.5﹣0.5
=8
5.(2019辽宁营口中考模拟)甲车从A地出发匀速驶往B地,同时乙车从B地出发匀速驶往A地.如图表示甲、乙两车在全程行驶的过程中,离各自出发地的路程y(千米)与出发时间x(时)的函数图象.
(1)A、B两地相距 千米;甲车的速度为 千米/时;
(2)当乙车距A地的路程为A、B两地距离的时,甲车刚好行驶80千米.求此时乙车到达A地还需行驶多长时间.
【分析】此题是路程、速度、时间的关系问题,根据路程=速度×时间可列出函数关系式.
【解析】(1)由图象得AB两地的路程为:180千米,
甲车的速度为:180÷3=60千米/时.
故答案为:180,60;
(2)求出乙车的速度是:180×(1-)÷=90千米/时,
则乙车到达A地还需行驶的时间为:
180×÷90=小时.
答:乙车到达A地还需行驶小时.
6.(2019?兰州)如图,在△ABC中,AB=AC=6cm,BC=8cm,点D为BC的中点,BE=DE,将∠BDE绕点D顺时针旋转α度(0≤α≤83°),角的两边分别交直线AB于M、N两点,设B、M两点间的距离为xcm,M,N两点间的距离为ycm.
小涛根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小涛的探究过程,请补充完整.
(1)列表:下表的已知数据是B,M两点间的距离x进行取点、画图、测量,分别得到了y与x的几组对应值:
x/m 0 0.30 0.50 1.00 1.50 2.00 2.50 3.00 3.50 3.68 3.81 3.90 3.93 4.10
y/m 3 2.88 2.81 2.69 2.67 2.80 3.15 3.85 5.24 6.01 6.71 7.27 7.44 8.87
请你通过计算,补全表格;
(2)描点、连线,在平面直角坐标系xOy中,描出表格中各组数值所对应的点(x,y),并画出函数y关于x的图象.
(3)探究性质:随着自变量x的不断增大,函数y的变化趋势: .
(4)解决问题:当MN=2BM时,BM的长度大约是 cm.(保留两位小数).
【分析】(1)①当x=BM=0时,则y=MN=BN==3;②MD2=HD2+EH2=,则y=MN=MDtanα,即可求解;
(2)描点出如下图象,从图象可以看出:随着自变量x的不断增大,函数y的变化趋势;
(3)MN=2BM,即y=2x,在上图中作直线y=2x,即可求解.
【解答】解:(1)①当x=BM=0时,
连接AD,则AD⊥BC,BD=CD=BC=4,
cos∠ABD===cosα,则sinα=,
则y=MN=BN==3;
②x=BM=,
在△MBD中,BD=4,BM=,
cos∠B==cosα,tanα=,
过点M作MH⊥BD于点H,
则BH=BMcosα=,则MH=,
MD2=HD2+EH2=,
则BD2=BM2+MD2,
故∠BMD=90°,
则y=MN=MDtanα=(DBsinα)tanα=;
故:答案为3,;
(2)描点出如下图象,
(3)从图象可以看出:0≤x≤1.65时,y随x最大而减小,
当1.65<x≤4.10时,y随x最大而增大(数值是估值,不唯一);
(4)方法一:
MN=2BM,即y=2x,
在上图中作直线y=2x,
直线与曲线交点的横坐标1.33和4
故答案为:1.33或4.
方法二:
如图3,DN与CA的延长线交于点H.
设BM=x,MN=2x
EN=3x﹣3,AN=6﹣3x
∵∠NDB=∠H+∠C(外角的性质)
∠NDB=∠MDB+∠NDM
∴∠MDB+∠NDM=∠H+∠C
∴∠MDB=∠H,∠B=∠C
∴△MDB∽△DHC
∴=
∴,CH=,HA=HC﹣AC=﹣6
又∵△HAN∽△DEN
∴=
∴=
3x3﹣16x+16=0
解得x1=4,x2=.
故答案为:1.33或4.
7.(2019 天津中考)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.
(Ⅰ)如图①,求点E的坐标;
(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.
①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;
②当≤S≤5时,求t的取值范围(直接写出结果即可).
【分析】(Ⅰ)由已知得出AD=OA﹣OD=4,由矩形的性质得出∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,由勾股定理得出ED=4,即可得出答案;
(Ⅱ)①由平移的性质得:O′D′=2,E′D′=4,ME′=OO′=t,D′E′∥O′C′∥OB,得出∠E′FM=∠ABO=30°,在Rt△MFE′中,MF=2ME′=2t,FE′===t,求出S△MFE′=ME′?FE′=×t×t=,S矩形C′O′D′E′=O′D′?E′D′=2×4=8,即可得出答案;
②当S=时,O'A=OA﹣OO'=6﹣t,由直角三角形的性质得出O'F=O'A=(6﹣t),得出方程,解方程即可;
当S=5时,O'A=6﹣t,D'A=6﹣t﹣2=4﹣t,由直角三角形的性质得出O'G=(6﹣t),D'F=(4﹣t),由梯形面积公式得出S=[(6﹣t)+(4﹣t)]×2=5,解方程即可.
【解答】解:(Ⅰ)∵点A(6,0),
∴OA=6,
∵OD=2,
∴AD=OA﹣OD=6﹣2=4,
∵四边形CODE是矩形,
∴DE∥OC,
∴∠AED=∠ABO=30°,
在Rt△AED中,AE=2AD=8,ED===4,
∵OD=2,
∴点E的坐标为(2,4);
(Ⅱ)①由平移的性质得:O′D′=2,E′D′=4,ME′=OO′=t,D′E′∥O′C′∥OB,
∴∠E′FM=∠ABO=30°,
∴在Rt△MFE′中,MF=2ME′=2t,FE′===t,
∴S△MFE′=ME′?FE′=×t×t=,
∵S矩形C′O′D′E′=O′D′?E′D′=2×4=8,
∴S=S矩形C′O′D′E′﹣S△MFE′=8﹣,
∴S=﹣t2+8,其中t的取值范围是:0<t<2;
②当S=时,如图③所示:
O'A=OA﹣OO'=6﹣t,
∵∠AO'F=90°,∠AFO'=∠ABO=30°,
∴O'F=O'A=(6﹣t)
∴S=(6﹣t)×(6﹣t)=,
解得:t=6﹣,或t=6+(舍去),
∴t=6﹣;当S=5时,如图④所示:
O'A=6﹣t,D'A=6﹣t﹣2=4﹣t,
∴O'G=(6﹣t),D'F=(4﹣t),
∴S=[(6﹣t)+(4﹣t)]×2=5,
解得:t=,
∴当≤S≤5时,t的取值范围为≤t≤6﹣.
8.(2019 江西中考)数学活动课上,张老师引导同学进行如下探究:
如图1,将长为12cm的铅笔AB斜靠在垂直于水平桌面AE的直尺FO的边沿上,一端A固定在桌面上,图2是示意图.
活动一
如图3,将铅笔AB绕端点A顺时针旋转,AB与OF交于点D,当旋转至水平位置时,铅笔AB的中点C与点O重合.
数学思考
(1)设CD=xcm,点B到OF的距离GB=ycm.
①用含x的代数式表示:AD的长是 cm,BD的长是 cm;
②y与x的函数关系式是 ,自变量x的取值范围是 .
活动二
(2)①列表:根据(1)中所求函数关系式计算并补全表格
x(cm) 6 5 4 3.5 3 2.5 2 1 0.5 0
y(cm) 0 0.55 1.2 1.58 2 2.47 3 4.29 5.08 6
②描点:根据表中数值,继续描出①中剩余的两个点(x,y).
③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.
数学思考
(3)请你结合函数的图象,写出该函数的两条性质或结论.
【分析】(1)①利用线段的和差定义计算即可.
②利用平行线分线段成比例定理解决问题即可.
(2)①利用函数关系式计算即可.
②描出点(0,6),(3,2)即可.
③由平滑的曲线画出该函数的图象即可.
(3)根据函数图象写出两个性质即可(答案不唯一).
【解答】解:(1)①如图3中,由题意AC=OA=AB=6(cm),
∵CD=xcm,
∴AD=(6+x)(cm),BD=12﹣(6+x)=(6﹣x)(cm),
故答案为:(6+x),(6﹣x).
②作BG⊥OF于G.
∵OA⊥OF,BG⊥OF,
∴BG∥OA,
∴=,
∴=,
∴y=(0≤x≤6),
故答案为:y=,0≤x≤6.
(2)①当x=3时,y=2,当x=0时,y=6,
故答案为2,6.
②点(0,6),点(3,2)如图所示.
③函数图象如图所示.
(3)性质1:函数值y的取值范围为0≤y≤6.
性质2:函数图象在第一象限,y随x的增大而减小.
PAGE
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
页 1