中小学教育资源及组卷应用平台
【专题讲义】备战2020中考总复习精编重难点
第15讲 三角形(提高版)
【学生版】
一、考点知识梳理
【考点1 三角形及相关概念】
1.三角形的分类
(1)按角分类:锐角三角形、直角三角形、钝角三角形
(2)按边分类不等边三角形: 等腰三角形、等边三角形、腰与底边不相等的三角形
2.三边关系:三角形任意两边之和大于第三边.任意两边之差小于第三边.
3.内角和定理:三角形的内角和等于180°.
4.内外角关系:三角形的一个外角等于与它不相邻的两个内角之和.三角形的一个外角大于任何一个和它不相邻的内角.
5.三角形中的四条重要线段
中线:连接一个顶点与它对边中点的线段高线
高线:从三角形一个顶点到它对边所在直线的垂线段
角平分线:一个内角的平分线与这个角的对边相交,顶点与交点之间的线段
中位线:连接三角形两边中点的线段
【考点2 全等三角形及其性质】
1.全等三角形的定义:能完全重合的两个三角形叫做全等三角形.
2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;
(2)全等三角形的对应线段(角平分线、中线、高线、中位线)相等,对应周长相等,对应面积相等
3.判定两个三角形全等的一般方法有:
(1)三边对应相等的两个三角形全等,简记为:边边边SSS ;
(2)两角和它们的夹边对应相等的两个三角形全等,简记为:角边角ASA;
(3)两角和其中一角的对边对应相等的两个三角形全等,简记为:角角边AAS;
(4)两边和它们的夹角对应相等的两个三角形全等,简记为:边角边SAS.
【考点3 直角三角形及勾股定理】
1.性质:直角三角形中,如果一个锐角等于30°,那么它所对的边等于斜边的一半;(2)直角三角形斜边的中线等于斜边的一半。
2. 勾股定理:直角三角形两条直角边的平方和等于斜边的平方;即(a、b为直角三角形的直角边,c为斜边)。
3.勾股定理的逆定理
如果一个三角形有两条边的平方和等于第三边的平方,那么这个三角形是直角三角形;
即:在△ABC中,∠A、∠B、∠C所对的边分别为、、,若,则∠C=90°(即△ABC是直角三角形)
4.直角三角形的判定:(1)有一个角等于90°的三角形是直角三角形;(2)勾股定理的逆定理。
【考点4 等腰三角形及线段的垂直平分线】
1.性质:(1)等边对等角;(2)等腰三角形的顶角的平分线、底边的中线、底边的中线重合(即三线合一);(3)等边三角形的各边相等,各角相等,每个角都等于60°.
2.判定:(1)有两个角相等的三角形是等腰三角形;(2)有一个角等于60°的三角形是等腰三角形。
3.线段的垂直平分线:
定理:线段垂直平分线上的点到线段两端点的距离相等.
判定:到线段两端点距离相等的点在线段的垂直平分线上.
考点分析
【考点1 三角形及相关概念】
【解题技巧】1.判断几条线段能否构成三角形:运用三角形三边关系判定三条线段能否构成三角形,并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判断这三条线段能构成一个三角形.
2.三角形的面积:(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.
(2)三角形的中线将三角形分成面积相等的两部分.
【例1】(2019 湖北黄石中考)如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=( )
A.125° B.145° C.175° D.190°
【举一反三1-1】(2019 江苏徐州中考)下列长度的三条线段,能组成三角形的是( )
A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10
【举一反三1-2】(2019 北京中考)如图,已知△ABC,通过测量、计算得△ABC的面积约为 cm2.(结果保留一位小数)
【举一反三1-3】(2019 江苏徐州中考)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为 .
【举一反三1-4】(2019 江苏徐州中考)
【考点2 全等三角形及其性质】
【解题技巧】1.全等三角形的证明及性质是近几年中考的常考考点,单独考查过,考查方式均为在解题过程中利用三角形全等的证明及性质得到相关结论.涉及到的背景有:(1)与三角形结合;(2)与四边形结合;(3)与圆结合.每年都在图形的平移、旋转及位似等图形变换的猜想证明题中考查,设问方式为证明线段之间的数量关系.
判定两个三角形全等的解题思路:
【例2】(2019 湖北孝感中考)如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为( )
A. B. C. D.
【举一反三2-1】
(2019?兰州)如图,AB=DE,BF=EC,∠B=∠E,求证:AC∥DF.
【举一反三2-2】(2019 福建中考)已知△ABC和点A',如图.
(1)以点A'为一个顶点作△A'B'C',使△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)
(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、C'A'的中点,求证:△DEF∽△D'E'F'.
【举一反三2-3】(2019 北京中考)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.
(1)依题意补全图1;
(2)求证:∠OMP=∠OPN;
(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.
【举一反三2-4】(2019 湖北黄石中考)如图,在△ABC中,∠BAC=90°,E为边BC上的点,且AB=AE,D为线段BE的中点,过点E作EF⊥AE,过点A作AF∥BC,且AF、EF相交于点F.
(1)求证:∠C=∠BAD;
(2)求证:AC=EF.
【举一反三2-5】(2019?广州)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌CFE.
【考点3 直角三角形及勾股定理】
【解题技巧】1.勾股定理公式a2+b2=c2 的变形有:a=,b=及c=.
2.由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.
3.勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断,运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.
注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
【例3】(2019 河北唐山中考模拟)如图,在Rt△ABC中,AB=AC,∠A=90°,D为BC上任意一点,DF⊥AB于点F,DE⊥AC于点E,M为BC的中点,连接EM,FM,给出以下五个结论:①AF=CE;②AE=BF;③△EFM是等腰直角三角形;④S四边形AEMF=S△ABC;⑤EF=BM=MC.当点D在BC上运动时(点D不与B,C重合),上述结论中始终正确的有( )
A.2个 B.3个 C.4个 D.5个
【举一反三3-1】(2019 江苏南京中考)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长 .
【举一反三3-2】(2019甘肃中考)如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为 .
【举一反三3-3】(2019?广州)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.
(1)当点F在AC上时,求证:DF∥AB;
(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;
(3)当B,F,E三点共线时.求AE的长.
【考点4 等腰三角形及线段的垂直平分线】
【解题技巧】1.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.
2.等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);
3.若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=+1,所以r:R=1:+1.
4.等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.
等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.
等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.
【例4】(2019?兰州)在△ABC中,AB=AC,∠A=40°,则∠B= °.
【举一反三4-1】(2019?台湾)如图,△ABC中,AC=BC<AB.若∠1、∠2分别为∠ABC、∠ACB的外角,则下列角度关系何者正确( )
A.∠1<∠2 B.∠1=∠2 C.∠A+∠2<180° D.∠A+∠1>180°
【举一反三4-2】(2019 新疆中考)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为 .
【举一反三4-3】(2019 黑龙江哈尔滨中考)(2019?哈尔滨)如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为 .
【举一反三4-4】(2019 浙江杭州中考)如图,在△ABC中,AC<AB<BC.
(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.
(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.
三、【达标测试】
(一)选择题
1.(2019 浙江杭州中考)在△ABC中,若一个内角等于另外两个内角的差,则( )
A.必有一个内角等于30° B.必有一个内角等于45°
C.必有一个内角等于60° D.必有一个内角等于90°
2.(2019?青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为( )
A.35° B.40° C.45° D.50°
3.(2019?广州)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为( )
A.4 B.4 C.10 D.8
4.(2019 河北石家庄中考模拟)如图,在四边形ABCD中,AD∥BC,AB与DC不平行,∠C=90°,E为CD中点,∠FAE=∠DAE,点F在直线BC上,则∠AEF的度数是( ).
A.80° B.90° C.45° D.100°
5.(2019 山东青岛中考模拟)如图,在△ABC中,AB=AC,D,E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6 cm,DE=2 cm,则BC=________cm.
A.2cm B.4 cm C.6 cm D.8 cm
6.(2019 河南开封中考模拟)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=( )
A.35° B.95° C.85° D.75°
7.(2019 河北沧州中考模拟)小红家的阳台上放置了一个晒衣架,如图1,图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点在地面上,经测量得到AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条线段,且EF=32cm,垂挂在衣架上的连衣裙总长度小于( )cm时,连衣裙才不会拖在地面上?
A.120 B.102 C.68 D.136
8.(2019 重庆中考模拟)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D.CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.下面答案不正确的是( )
A.AF=CG B.CF=2DE C.CF=DE D.CF=BG
填空题
1.(2019 江苏南京中考)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是 .
2.(2019江西中考)如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE= °.
3.(2019 黑龙江哈尔滨中考)(2019?哈尔滨)在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为 度.
4.(2019?威海)如图,在四边形ABCD中,AB∥CD,连接AC,BD.若∠ACB=90°,AC=BC,AB=BD,则∠ADC= °.
5.(2019?成都)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为 .
6.(2019?南通)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF= 度.
7.(2019 山东德州中考模拟)如图,在四边形ABCD中,AB⊥BC,AB=5,BC=12,AD=9,CD=5,那么四边形ABCD的面积是 .
8.(2019?广州)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:
①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.
其中正确的结论是 .(填写所有正确结论的序号)
解答题
1.(2019 辽宁大连中考)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.
2.(2019 山西中考)已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.
3.(2019江苏南京中考)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.
4.(2019 湖北孝感中考)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.
5.(2019 福建中考)如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.
6.(2019 安徽中考)如图,点E在?ABCD内部,AF∥BE,DF∥CE.
(1)求证:△BCE≌△ADF;
(2)设?ABCD的面积为S,四边形AEDF的面积为T,求的值.
7.(2019 甘肃中考)如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.
(1)证明:△ADG≌△DCE;
(2)连接BF,证明:AB=FB.
8.(2019 青海中考)如图,在△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形.
9.(2019?新疆)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD中点,连接OE.过点C作CF∥BD交OE的延长线于点F,连接DF.
求证:(1)△ODE≌△FCE;
(2)四边形OCFD是矩形.
10.(2019?哈尔滨)已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.
(1)如图1,求证:AE=CF;
(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.
PAGE
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
页 1
中小学教育资源及组卷应用平台
【专题讲义】备战2020中考总复习精编重难点
第15讲 三角形(解析版)
【教师版】
一、考点知识梳理
【考点1 三角形及相关概念】
1.三角形的分类
(1)按角分类:锐角三角形、直角三角形、钝角三角形
(2)按边分类不等边三角形: 等腰三角形、等边三角形、腰与底边不相等的三角形
2.三边关系:三角形任意两边之和大于第三边.任意两边之差小于第三边.
3.内角和定理:三角形的内角和等于180°.
4.内外角关系:三角形的一个外角等于与它不相邻的两个内角之和.三角形的一个外角大于任何一个和它不相邻的内角.
5.三角形中的四条重要线段
中线:连接一个顶点与它对边中点的线段高线
高线:从三角形一个顶点到它对边所在直线的垂线段
角平分线:一个内角的平分线与这个角的对边相交,顶点与交点之间的线段
中位线:连接三角形两边中点的线段
【考点2 全等三角形及其性质】
1.全等三角形的定义:能完全重合的两个三角形叫做全等三角形.
2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;
(2)全等三角形的对应线段(角平分线、中线、高线、中位线)相等,对应周长相等,对应面积相等
3.判定两个三角形全等的一般方法有:
(1)三边对应相等的两个三角形全等,简记为:边边边SSS ;
(2)两角和它们的夹边对应相等的两个三角形全等,简记为:角边角ASA;
(3)两角和其中一角的对边对应相等的两个三角形全等,简记为:角角边AAS;
(4)两边和它们的夹角对应相等的两个三角形全等,简记为:边角边SAS.
【考点3 直角三角形及勾股定理】
1.性质:直角三角形中,如果一个锐角等于30°,那么它所对的边等于斜边的一半;(2)直角三角形斜边的中线等于斜边的一半。
2. 勾股定理:直角三角形两条直角边的平方和等于斜边的平方;即(a、b为直角三角形的直角边,c为斜边)。
3.勾股定理的逆定理
如果一个三角形有两条边的平方和等于第三边的平方,那么这个三角形是直角三角形;
即:在△ABC中,∠A、∠B、∠C所对的边分别为、、,若,则∠C=90°(即△ABC是直角三角形)
4.直角三角形的判定:(1)有一个角等于90°的三角形是直角三角形;(2)勾股定理的逆定理。
【考点4 等腰三角形及线段的垂直平分线】
1.性质:(1)等边对等角;(2)等腰三角形的顶角的平分线、底边的中线、底边的中线重合(即三线合一);(3)等边三角形的各边相等,各角相等,每个角都等于60°.
2.判定:(1)有两个角相等的三角形是等腰三角形;有一个角等于60°的三角形是等腰三角形。
3.线段的垂直平分线:
定理:线段垂直平分线上的点到线段两端点的距离相等.
判定:到线段两端点距离相等的点在线段的垂直平分线上.
考点分析
【考点1 三角形及相关概念】
【解题技巧】1.判断几条线段能否构成三角形:运用三角形三边关系判定三条线段能否构成三角形,并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判断这三条线段能构成一个三角形.
2.三角形的面积:(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.
(2)三角形的中线将三角形分成面积相等的两部分.
【例1】(2019 湖北黄石中考)如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=( )
A.125° B.145° C.175° D.190°
【答案】C.
【分析】根据直角三角形的斜边上的中线的性质,即可得到△CDF是等边三角形,进而得到∠ACD=60°,根据∠BCD和∠BDC的角平分线相交于点E,即可得出∠CED=115°,即可得到∠ACD+∠CED=60°+115°=175°.
【解答】解:∵CD⊥AB,F为边AC的中点,
∴DF=AC=CF,
又∵CD=CF,
∴CD=DF=CF,
∴△CDF是等边三角形,
∴∠ACD=60°,
∵∠B=50°,
∴∠BCD+∠BDC=130°,
∵∠BCD和∠BDC的角平分线相交于点E,
∴∠DCE+∠CDE=65°,
∴∠CED=115°,
∴∠ACD+∠CED=60°+115°=175°,
故选:C.
【举一反三1-1】(2019 江苏徐州中考)下列长度的三条线段,能组成三角形的是( )
A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10
【答案】D.
【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.
【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,
∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,
∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,
∵6+8>10,∴6,8,10能组成三角形,故选项D正确,
故选:D.
【举一反三1-2】(2019 北京中考)如图,已知△ABC,通过测量、计算得△ABC的面积约为 cm2.(结果保留一位小数)
【答案】1.9.
【分析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.
【解答】解:过点C作CD⊥AB的延长线于点D,如图所示.
经过测量,AB=2.2cm,CD=1.7cm,
∴S△ABC=AB?CD=×2.2×1.7≈1.9(cm2).
故答案为:1.9.
【举一反三1-3】(2019 江苏徐州中考)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为 .
【答案】16.
【分析】根据中位线的性质求出BO长度,再依据矩形的性质AC=BD=2BO进行求解问题.
【解答】解:∵M、N分别为BC、OC的中点,
∴BO=2MN=8.
∵四边形ABCD是矩形,
∴AC=BD=2BO=16.
故答案为16.
【举一反三1-4】(2019 江苏徐州中考)
【考点2 全等三角形及其性质】
【解题技巧】1.全等三角形的证明及性质是近几年中考的常考考点,单独考查过,考查方式均为在解题过程中利用三角形全等的证明及性质得到相关结论.涉及到的背景有:(1)与三角形结合;(2)与四边形结合;(3)与圆结合.每年都在图形的平移、旋转及位似等图形变换的猜想证明题中考查,设问方式为证明线段之间的数量关系.
判定两个三角形全等的解题思路:
【例2】(2019 湖北孝感中考)如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为( )
A. B. C. D.
【答案】A.
【分析】证明△BCE≌△CDF(SAS),得∠CBE=∠DCF,所以∠CGE=90°,根据等角的余弦可得CG的长,可得结论.
【解答】解:正方形ABCD中,∵BC=4,
∴BC=CD=AD=4,∠BCE=∠CDF=90°,
∵AF=DE=1,
∴DF=CE=3,
∴BE=CF=5,
在△BCE和△CDF中,
,
∴△BCE≌△CDF(SAS),
∴∠CBE=∠DCF,
∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,
cos∠CBE=cos∠ECG=,
∴,CG=,
∴GF=CF﹣CG=5﹣=,
故选:A.
【举一反三2-1】
(2019?兰州)如图,AB=DE,BF=EC,∠B=∠E,求证:AC∥DF.
【分析】要证明AC∥DF,只要证明∠ACB=∠DFE即可,要证明∠ACB=∠DFE,只要证明△ABC≌△DEF即可,根据题目中的条件可以证明△ABC≌△DEF,本题得以解决.
【解答】证明:∵BF=EC,
∴BF+FC=EC+FC,
∴BC=EF,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(SAS),
∴∠ACB=∠DFE,
∴AC∥DF.
【举一反三2-2】(2019 福建中考)已知△ABC和点A',如图.
(1)以点A'为一个顶点作△A'B'C',使△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)
(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、C'A'的中点,求证:△DEF∽△D'E'F'.
【分析】(1)分别作A'C'=2AC、A'B'=2AB、B'C'=2BC得△A'B'C'即可所求.
(2)根据中位线定理易得∴△DEF∽△ABC,△D'E'F'∽△A'B'C',故△DEF∽△D'E'F'
【解答】解:(1)作线段A'C'=2AC、A'B'=2AB、B'C'=2BC,得△A'B'C'即可所求.
证明:∵A'C'=2AC、A'B'=2AB、B'C'=2BC,
∴△ABC∽△A′B′C′,
∴
(2)证明:
∵D、E、F分别是△ABC三边AB、BC、AC的中点,
∴DE=,,,
∴△DEF∽△ABC
同理:△D'E'F'∽△A'B'C',
由(1)可知:△ABC∽△A′B′C′,
∴△DEF∽△D'E'F'.
【举一反三2-3】(2019 北京中考)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.
(1)依题意补全图1;
(2)求证:∠OMP=∠OPN;
(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.
【分析】(1)根据题意画出图形.
(2)由旋转可得∠MPN=150°,故∠OPN=150°﹣∠OPM;由∠AOB=30°和三角形内角和180°可得∠OMP=180°﹣30°﹣∠OPM=150°﹣∠OPM,得证.
(3)根据题意画出图形,以ON=QP为已知条件反推OP的长度.由(2)的结论∠OMP=∠OPN联想到其补角相等,又因为旋转有PM=PN,已具备一边一角相等,过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,即可构造出△PDM≌△NCP,进而得PD=NC,DM=CP.此时加上ON=QP,则易证得△OCN≌△QDP,所以OC=QD.利用∠AOB=30°,设PD=NC=a,则OP=2a,OD=a.再设DM=CP=x,所以QD=OC=OP+PC=2a+x,MQ=DM+QD=2a+2x.由于点M、Q关于点H对称,即点H为MQ中点,故MH=MQ=a+x,DH=MH﹣DM=a,所以OH=OD+DH=a+a=+1,求得a=1,故OP=2.证明过程则把推理过程反过来,以OP=2为条件,利用构造全等证得ON=QP.
【解答】解:(1)如图1所示为所求.
(2)设∠OPM=α,
∵线段PM绕点P顺时针旋转150°得到线段PN
∴∠MPN=150°,PM=PN
∴∠OPN=∠MPN﹣∠OPM=150°﹣α
∵∠AOB=30°
∴∠OMP=180°﹣∠AOB﹣∠OPM=180°﹣30°﹣α=150°﹣α
∴∠OMP=∠OPN
(3)OP=2时,总有ON=QP,证明如下:
过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2
∴∠NCP=∠PDM=∠PDQ=90°
∵∠AOB=30°,OP=2
∴PD=OP=1
∴OD=
∵OH=+1
∴DH=OH﹣OD=1
∵∠OMP=∠OPN
∴180°﹣∠OMP=180°﹣∠OPN
即∠PMD=∠NPC
在△PDM与△NCP中
∴△PDM≌△NCP(AAS)
∴PD=NC,DM=CP
设DM=CP=x,则OC=OP+PC=2+x,MH=MD+DH=x+1
∵点M关于点H的对称点为Q
∴HQ=MH=x+1
∴DQ=DH+HQ=1+x+1=2+x
∴OC=DQ
在△OCN与△QDP中
∴△OCN≌△QDP(SAS)
∴ON=QP
【举一反三2-4】(2019 湖北黄石中考)如图,在△ABC中,∠BAC=90°,E为边BC上的点,且AB=AE,D为线段BE的中点,过点E作EF⊥AE,过点A作AF∥BC,且AF、EF相交于点F.
(1)求证:∠C=∠BAD;
(2)求证:AC=EF.
【分析】(1)由等腰三角形的性质可得AD⊥BC,由余角的性质可得∠C=∠BAD;
(2)由“ASA”可证△ABC≌△EAF,可得AC=EF.
【解答】证明:(1)∵AB=AE,D为线段BE的中点,
∴AD⊥BC
∴∠C+∠DAC=90°,
∵∠BAC=90°
∴∠BAD+∠DAC=90°
∴∠C=∠BAD
(2)∵AF∥BC
∴∠FAE=∠AEB
∵AB=AE
∴∠B=∠AEB
∴∠B=∠FAE,且∠AEF=∠BAC=90°,AB=AE
∴△ABC≌△EAF(ASA)
∴AC=EF
【举一反三2-5】(2019?广州)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌CFE.
【分析】利用AAS证明:△ADE≌CFE.
【解答】证明:∵FC∥AB,
∴∠A=∠FCE,∠ADE=∠F,
在△ADE与△CFE中:
∵,
∴△ADE≌△CFE(AAS).
【考点3 直角三角形及勾股定理】
【解题技巧】1.勾股定理公式a2+b2=c2 的变形有:a=,b=及c=.
2.由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.
3.勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断,运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.
注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
【例3】(2019 河北唐山中考模拟)如图,在Rt△ABC中,AB=AC,∠A=90°,D为BC上任意一点,DF⊥AB于点F,DE⊥AC于点E,M为BC的中点,连接EM,FM,给出以下五个结论:①AF=CE;②AE=BF;③△EFM是等腰直角三角形;④S四边形AEMF=S△ABC;⑤EF=BM=MC.当点D在BC上运动时(点D不与B,C重合),上述结论中始终正确的有( )
A.2个 B.3个 C.4个 D.5个
【答案】C.
【分析】直角三角形和等腰三角形的性质借助于全等三角形的判定,连接AM,易证AE=DF=BF,AF=DE=CE,△AME≌△BMF.
【解答】连接AM,
∴AE=DF=BF,AF=DE=CE.
△AME≌△BMF.
∴ME=MF,∠AME=∠BMF.
∴△EMF是等腰直角三角形.
S四边形AEMF=S△AFM+S△AEM..
=S△AFM+S△BFM=S△ABM.
=S△ABC.
但是EF与BM不一定相等,只有四边形AFME为矩形时
∴EF=BM.
故选C.
【举一反三3-1】(2019 江苏南京中考)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长 .
【答案】.
【分析】证出∠ACD=∠DCB=∠B,证明△ACD∽△ABC,得出=,即可得出结果.
【解答】解:∵BC的垂直平分线MN交AB于点D,
∴CD=BD=3,
∴∠B=∠DCB,AB=AD+BD=5,
∵CD平分∠ACB,
∴∠ACD=∠DCB=∠B,
∵∠A=∠A,
∴△ACD∽△ABC,
∴=,
∴AC2=AD×AB=2×5=10,
∴AC=.
故答案为:.
【举一反三3-2】(2019甘肃中考)如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为 .
【答案】C.
【分析】设CE=x,则BE=6﹣x由折叠性质可知,EF=CE=x,DF=CD=AB=10,所以AF=8,BF=AB﹣AF=10﹣8=2,在Rt△BEF中,BE2+BF2=EF2,即(6﹣x)2+22=x2,解得x=.
【解答】解:设CE=x,则BE=6﹣x由折叠性质可知,EF=CE=x,DF=CD=AB=10,
在Rt△DAF中,AD=6,DF=10,
∴AF=8,
∴BF=AB﹣AF=10﹣8=2,
在Rt△BEF中,BE2+BF2=EF2,
即(6﹣x)2+22=x2,
解得x=,
故答案为.
【举一反三3-3】(2019?广州)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.
(1)当点F在AC上时,求证:DF∥AB;
(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;
(3)当B,F,E三点共线时.求AE的长.
【分析】(1)由折叠的性质和等边三角形的性质可得∠DFC=∠A,可证DF∥AB;
(2)过点D作DM⊥AB交AB于点M,由题意可得点F在以D为圆心,DF为半径的圆上,由△ACD的面积为S1的值是定值,则当点F在DM上时,S△ABF最小时,S最大;
(3)过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,由勾股定理可求BG的长,通过证明△BGD∽△BHE,可求EC的长,即可求AE的长.
【解答】解:(1)∵△ABC是等边三角形
∴∠A=∠B=∠C=60°
由折叠可知:DF=DC,且点F在AC上
∴∠DFC=∠C=60°
∴∠DFC=∠A
∴DF∥AB;
(2)存在,
过点D作DM⊥AB交AB于点M,
∵AB=BC=6,BD=4,
∴CD=2
∴DF=2,
∴点F在以D为圆心,DF为半径的圆上,
∴当点F在DM上时,S△ABF最小,
∵BD=4,DM⊥AB,∠ABC=60°
∴MD=2
∴S△ABF的最小值=×6×(2﹣2)=6﹣6
∴S最大值=×2×3﹣(6﹣6)=﹣3+6
(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,
∵△CDE关于DE的轴对称图形为△FDE
∴DF=DC=2,∠EFD=∠C=60°
∵GD⊥EF,∠EFD=60°
∴FG=1,DG=FG=
∵BD2=BG2+DG2,
∴16=3+(BF+1)2,
∴BF=﹣1
∴BG=
∵EH⊥BC,∠C=60°
∴CH=,EH=HC=EC
∵∠GBD=∠EBH,∠BGD=∠BHE=90°
∴△BGD∽△BHE
∴
∴
∴EC=﹣1
∴AE=AC﹣EC=7﹣
【考点4 等腰三角形及线段的垂直平分线】
【解题技巧】1.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.
2.等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);
3.若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=+1,所以r:R=1:+1.
4.等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.
等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.
等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.
【例4】(2019?兰州)在△ABC中,AB=AC,∠A=40°,则∠B= °.
【答案】70.
【分析】根据等腰三角形的性质和三角形内角和计算∠B的度数.
【解答】解:∵AB=AC,
∴∠B=∠C,
∵∠A+∠B+∠C=180°,
∴∠B=(180°﹣40°)=70°.
故答案为70.
【举一反三4-1】(2019?台湾)如图,△ABC中,AC=BC<AB.若∠1、∠2分别为∠ABC、∠ACB的外角,则下列角度关系何者正确( )
A.∠1<∠2 B.∠1=∠2 C.∠A+∠2<180° D.∠A+∠1>180°
【答案】C.
【分析】由AC=BC<AB,得∠A=∠ABC<∠ACB,再由三角形的外角性质定理和三角形的内角和可得正确答案.
【解答】解:∵AC=BC<AB,
∴∠A=∠ABC<∠ACB,
∵∠1、∠2分别为∠ABC、∠ACB的外角,
∴∠2=∠A+∠ABC,
∴∠A+∠2=∠A+∠A+∠ABC<∠ACB+∠A+∠ABC=180°,
故选:C.
【举一反三4-2】(2019 新疆中考)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为 .
【答案】2﹣2.
【分析】根据旋转性质及旋转过程可知根据旋转过程可知:∠CAD=30°=∠CAB,AC=AD=
4.从而得到∠BCD=150°,∠DCE=30°,∠E=45°.过点C作CH⊥AE于H点,
在Rt△ACH中,CH和AH长,在Rt△CHE中可求EH长,利用DE=EH﹣HD即可求解.
【解答】解:根据旋转过程可知:∠CAD=30°=∠CAB,AC=AD=4.
∴∠BCA=∠ACD=∠ADC=75°.
∴∠ECD=180°﹣2×75°=30°.
∴∠E=75°﹣30°=45°.
过点C作CH⊥AE于H点,
在Rt△ACH中,CH=AC=2,AH=2.
∴HD=AD﹣AH=4﹣2.
在Rt△CHE中,∵∠E=45°,
∴EH=CH=2.
∴DE=EH﹣HD=2﹣(4﹣2)=2﹣2.
故答案为2﹣2.
【举一反三4-3】(2019 黑龙江哈尔滨中考)(2019?哈尔滨)如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为 .
【答案】2
【分析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF是等边三角形
,可得DE=EF=DF=2,由勾股定理可求OC,BC的长.
【解答】解:如图,连接AC交BD于点O
∵AB=AD,BC=DC,∠A=60°,
∴AC垂直平分BD,△ABD是等边三角形
∴∠BAO=∠DAO=30°,AB=AD=BD=8,
BO=OD=4
∵CE∥AB
∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°
∴∠DAO=∠ACE=30°
∴AE=CE=6
∴DE=AD﹣AE=2
∵∠CED=∠ADB=60°
∴△EDF是等边三角形
∴DE=EF=DF=2
∴CF=CE﹣EF=4,OF=OD﹣DF=2
∴OC==2
∴BC==2
故答案为2.
【举一反三4-4】(2019 浙江杭州中考)如图,在△ABC中,AC<AB<BC.
(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.
(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.
【分析】(1)根据线段垂直平分线的性质可知PA=PB,根据等腰三角形的性质可得∠B=∠BAP,根据三角形的外角性质即可证得APC=2∠B;
(2)根据题意可知BA=BQ,根据等腰三角形的性质可得∠BAQ=∠BQA,再根据三角形的内角和公式即可解答.
【解答】解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,
∴PA=PB,
∴∠B=∠BAP,
∵∠APC=∠B+∠BAP,
∴∠APC=2∠B;
(2)根据题意可知BA=BQ,
∴∠BAQ=∠BQA,
∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,
∴∠BQA=2∠B,
∵∠BAQ+∠BQA+∠B=180°,
∴5∠B=180°,
∴∠B=36°.
三、【达标测试】
(一)选择题
1.(2019 浙江杭州中考)在△ABC中,若一个内角等于另外两个内角的差,则( )
A.必有一个内角等于30° B.必有一个内角等于45°
C.必有一个内角等于60° D.必有一个内角等于90°
【答案】D.
【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可.
【解答】解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,
∴2∠C=180°,
∴∠C=90°,
∴△ABC是直角三角形,
故选:D.
2.(2019?青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为( )
A.35° B.40° C.45° D.50°
【答案】C.
【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.
【解答】解:∵BD是△ABC的角平分线,AE⊥BD,
∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,
∴∠BAF=∠BEF=90°﹣17.5°,
∴AB=BE,
∴AF=EF,
∴AD=ED,
∴∠DAF=∠DEF,
∵∠BAC=180°﹣∠ABC﹣∠C=95°,
∴∠BED=∠BAD=95°,
∴∠CDE=95°﹣50°=45°,
故选:C.
3.(2019?广州)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为( )
A.4 B.4 C.10 D.8
【答案】A.
【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB==4,再由勾股定理求出AC即可.
【解答】解:连接AE,如图:
∵EF是AC的垂直平分线,
∴OA=OC,AE=CE,
∵四边形ABCD是矩形,
∴∠B=90°,AD∥BC,
∴∠OAF=∠OCE,
在△AOF和△COE中,,
∴△AOF≌△COE(ASA),
∴AF=CE=5,
∴AE=CE=5,BC=BE+CE=3+5=8,
∴AB===4,
∴AC===4;
故选:A.
4.(2019 河北石家庄中考模拟)如图,在四边形ABCD中,AD∥BC,AB与DC不平行,∠C=90°,E为CD中点,∠FAE=∠DAE,点F在直线BC上,则∠AEF的度数是( ).
A.80° B.90° C.45° D.100°
【答案】B.
【分析】添加辅助线,根据平行线的性质,可以得到两个三角形全等,再推出FA=FG,由等腰三角形的性质可以得到需要的结论.
【解答】解:延长AE交BC的延长线于点G.
∵AD∥BC,
∴∠D=∠ECG,∠DAE=∠G.
∵E为DC中点,
∴DE=CE,
∴△ADE≌△GCE,
∴AE=GE.
∵∠FAE=∠DAE,
∴∠FAE=∠G,
∴FA=FG,
∴∠AEF=90°.
故选:B.
5.(2019 山东青岛中考模拟)如图,在△ABC中,AB=AC,D,E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6 cm,DE=2 cm,则BC=________cm.
A.2cm B.4 cm C.6 cm D.8 cm
【答案】D.
【分析】如图,延长AD交BC于点M,由AB=AC,AD是∠BAC的平分线可得AM⊥BC,BM=MC=BC,延长ED交BC于点N,则△BEN是等边三角形,从而求出DN的长,利用在直角三角形中,30°的角所对的直角边等于斜边的一半,求出MN的长,进而求BM,BC的值.
【解答】延长AD交BC于点M,
∵由AB=AC,AD是∠BAC的平分线
∴AM⊥BC,BM=MC=BC,
延长ED交BC于点N,则△BEN是等边三角形
∵BE=6 cm DE=2 cm
∴DN=4 cm
在Rt△DMN中
∵∠DNM=60°
∴∠NDM=30°
∴MN=DN=2 cm
∴BM=4 cm
∴BC=8 cm
故选:D.
6.(2019 河南开封中考模拟)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=( )
A.35° B.95° C.85° D.75°
【答案】D.
【分析】利用角平分线的定义求得∠ACD的度数,从而利用三角形的外角等于和它不相邻的两个内角和求解.
【解答】∵∠ACD=∠A+∠B
∴∠ACD=∠A+35°
∵CE是△ABC的外角∠ACD的平分线
∴120°=∠A+35°
∴∠A=85°
故选:C
7.(2019 河北沧州中考模拟)小红家的阳台上放置了一个晒衣架,如图1,图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点在地面上,经测量得到AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条线段,且EF=32cm,垂挂在衣架上的连衣裙总长度小于( )cm时,连衣裙才不会拖在地面上?
A.120 B.102 C.68 D.136
【答案】A.
【分析】先根据等角对等边得出∠OAC=∠OCA=(180°﹣∠BOD)和∠OBD=∠ODB=(180°﹣∠BOD),进而利用平行线的判定得出即可,再证明Rt△OEM∽Rt△ABH,进而得出AH的长即可.
【解答】解:∵AB、CD相交于点O,
∴∠AOC=∠BOD
∵OA=OC,
∴∠OAC=∠OCA=(180°﹣∠BOD),
同理可证:∠OBD=∠ODB=(180°﹣∠BOD),
∴∠OAC=∠OBD,
∴AC∥BD,
在Rt△OEM中,OM==30(cm),
过点A作AH⊥BD于点H,
同理可证:EF∥BD,
∴∠ABH=∠OEM,则Rt△OEM∽Rt△ABH,
∴,AH==120(cm),
所以垂挂在衣架上的连衣裙总长度小于120cm时,连衣裙才不会拖落到地面上.
故选:A.
8.(2019 重庆中考模拟)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D.CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.下面答案不正确的是( )
A.AF=CG B.CF=2DE C.CF=DE D.CF=BG
【答案】C.
【分析】(1)要证明AF=CG,可以利用“ASA”证明△ACF≌△CBG来得到;(2)要证明CF=2DE,由(1)得CF=BG,则只要证明BG=2DE,又利用△AED≌△CEG可得DG=2DE,再证明DG=BG即可.
【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,AC=BC.
∴∠BCG=∠CAB=45°.
又∵∠ACF=∠CBG,AC=BC,
∴△ACF≌△CBG(ASA),
∴CF=BG,AF=CG;
(2)延长CG交AB于点H.
∵AC=BC,CG平分∠ACB,
∴CH⊥AB,H为AB中点.
又∵AD⊥AB,∴CH∥AD,∠D=∠EGC.
又∵H为AB中点,∴G为BD中点,∴BG=DG.
∵E为AC中点,∴AE=EC.
又∵∠AED=∠CEG,∴△AED≌△CEG(AAS),
∴DE=EG,∴DG=2DE,
∴BG=DG=2DE.
由(1)得CF=BG,∴CF=2DE.
综上可知:AF=CG;CF=2DE;CF=BG;CF=DE是错误的.
故选C.
填空题
1.(2019 江苏南京中考)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是 .
【答案】4<BC≤.
【分析】作△ABC的外接圆,求出当∠BAC=90°时,BC是直径最长=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,而∠BAC>∠ABC,即可得出答案.
【解答】解:作△ABC的外接圆,如图所示:
∵∠BAC>∠ABC,AB=4,
当∠BAC=90°时,BC是直径最长,
∵∠C=60°,
∴∠ABC=30°,
∴BC=2AC,AB=AC=4,
∴AC=,
∴BC=;
当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,
∵∠BAC>∠ABC,
∴BC长的取值范围是4<BC≤;
故答案为:4<BC≤.
2.(2019江西中考)如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE= °.
【答案】20
【分析】根据三角形内角和和翻折的性质解答即可.
【解答】解:∵∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,
∴∠ADC=40°+40°=80°,∠ADE=∠ADB=180°﹣40°﹣40°=100°,
∴∠CDE=100°﹣80°=20°,
故答案为:20
3.(2019 黑龙江哈尔滨中考)(2019?哈尔滨)在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为 度.
【答案】60°或10;
【分析】当△ACD为直角三角形时,存在两种情况:∠ADC=90°或∠ACD=90°,根据三角形的内角和定理可得结论.
【解答】解:分两种情况:
①如图1,当∠ADC=90°时,
∵∠B=30°,
∴∠BCD=90°﹣30°=60°;
②如图2,当∠ACD=90°时,
∵∠A=50°,∠B=30°,
∴∠ACB=180°﹣30°﹣50°=100°,
∴∠BCD=100°﹣90°=10°,
综上,则∠BCD的度数为60°或10°;
故答案为:60°或10;
4.(2019?威海)如图,在四边形ABCD中,AB∥CD,连接AC,BD.若∠ACB=90°,AC=BC,AB=BD,则∠ADC= °.
【答案】105°.
【分析】作DE⊥AB于E,CF⊥AB于F,则DE=CF,由等腰直角三角形的性质得出CF=AF=BF=AB,得出DE=CF=AB=BD,∠BAD=∠BDA,由直角三角形的性质得出∠ABD=30°,得出∠BAD=∠BDA=75°,再由平行线的性质即可得出答案.
【解答】解:作DE⊥AB于E,CF⊥AB于F,如图所示:
则DE=CF,
∵CF⊥AB,∠ACB=90°,AC=BC,
∴CF=AF=BF=AB,
∵AB=BD,∴DE=CF=AB=BD,∠BAD=∠BDA,
∴∠ABD=30°,
∴∠BAD=∠BDA=75°,
∵AB∥CD,
∴∠ADC+∠BAD=180°,
∴∠ADC=105°;
故答案为:105°.
5.(2019?成都)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为 .
【答案】9.
【分析】利用等腰三角形的性质和题目的已知条件证得△BAD≌△CAE后即可求得CE的长.
【解答】解:∵AB=AC,
∴∠B=∠C,
在△BAD和△CAE中,
∴△BAD≌△CAE,
∴BD=CE=9,
故答案为:9.
6.(2019?南通)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF= 度.
【答案】70.
【分析】先证明△ABE≌△CBF,可得∠BAE=∠BCF=25°;然后根据AB=BC,∠ABC=90°,求出∠ACB的度数,即可求出∠ACF的度数.
【解答】解:在Rt△ABE与Rt△CBF中,,
∴Rt△ABE≌Rt△CBF(HL).
∴∠BAE=∠BCF=25°;
∵AB=BC,∠ABC=90°,
∴∠ACB=45°,
∴∠ACF=25°+45°=70°;
故答案为:70.
7.(2019 山东德州中考模拟)如图,在四边形ABCD中,AB⊥BC,AB=5,BC=12,AD=9,CD=5,那么四边形ABCD的面积是 .
【答案】.
【分析】由△ABC为直角三角形,可利用勾股定理求出AC的长,再根据勾股定理的逆定理判断△ACD是直角三角形,从而可以求出四边形ABCD的面积.
【解答】连接AC.
∵AB⊥BC,∴∠B=90°,
∴AC===13.
∵在△ACD中,
AC2+AD2=132+92=169+81=250,
CD2=(5)2=250,
∴AC2+AD2=CD2,∴∠DAC=90°,
∴S四边形ABCD=S△ABC+S△ACD
=BC·AB+AD·AC
=×12×5+×9×13
=.
故答案为:
8.(2019?广州)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:
①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.
其中正确的结论是 .(填写所有正确结论的序号)
【答案】①④.
【分析】①正确.如图1中,在BC上截取BH=BE,连接EH.证明△FAE≌△EHC(SAS),即可解决问题.
②③错误.如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),再证明△GCE≌△GCH(SAS),即可解决问题.
④正确.设BE=x,则AE=a﹣x,AF=x,构建二次函数,利用二次函数的性质解决最值问题.
【解答】解:如图1中,在BC上截取BH=BE,连接EH.
∵BE=BH,∠EBH=90°,
∴EH=BE,∵AF=BE,
∴AF=EH,
∵∠DAM=∠EHB=45°,∠BAD=90°,
∴∠FAE=∠EHC=135°,
∵BA=BC,BE=BH,
∴AE=HC,
∴△FAE≌△EHC(SAS),
∴EF=EC,∠AEF=∠ECH,
∵∠ECH+∠CEB=90°,
∴∠AEF+∠CEB=90°,
∴∠FEC=90°,
∴∠ECF=∠EFC=45°,故①正确,
如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),
∴∠ECB=∠DCH,
∴∠ECH=∠BCD=90°,
∴∠ECG=∠GCH=45°,
∵CG=CG,CE=CH,
∴△GCE≌△GCH(SAS),
∴EG=GH,
∵GH=DG+DH,DH=BE,
∴EG=BE+DG,故③错误,
∴△AEG的周长=AE+EG+AG=AE+AH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故②错误,
设BE=x,则AE=a﹣x,AF=x,
∴S△AEF=?(a﹣x)×x=﹣x2+ax=﹣(x2﹣ax+a2﹣a2)=﹣(x﹣a)2+a2,
∵﹣<0,
∴x=a时,△AEF的面积的最大值为a2.故④正确,
故答案为①④.
解答题
1.(2019 辽宁大连中考)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.
【分析】利用SAS定理证明△ABF≌△DCE,根据全等三角形的性质证明结论.
【解答】证明:∵BE=CF,
∴BE+EF=CF+EF,即BF=CE,
在△ABF和△DCE中,
,
∴△ABF≌△DCE(SAS)
∴AF=DE.
2.(2019 山西中考)已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.
【分析】由已知得出AB=ED,由平行线的性质得出∠A=∠E,由AAS证明△ABC≌△EDF,即可得出结论.
【解答】证明:∵AD=BE,
∴AD﹣BD=BE﹣BD,
∴AB=ED,
∵AC∥EF,
∴∠A=∠E,
在△ABC和△EDF中,,
∴△ABC≌△EDF(AAS),
∴BC=DF.
3.(2019江苏南京中考)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.
【分析】依据四边形DBCE是平行四边形,即可得出BD=CE,依据CE∥AD,即可得出∠A=∠ECF,∠ADF=∠E,即可判定△ADF≌△CEF.
【解答】证明:∵DE∥BC,CE∥AB,
∴四边形DBCE是平行四边形,
∴BD=CE,
∵D是AB的中点,
∴AD=BD,
∴AD=EC,
∵CE∥AD,
∴∠A=∠ECF,∠ADF=∠E,
∴△ADF≌△CEF(ASA).
4.(2019 湖北孝感中考)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.
【分析】由HL证明Rt△ACB≌Rt△BDA得出∠ABC=∠BAD,由等腰三角形的判定定理即可得出结论.
【解答】证明:∵∠C=∠D=90°,
∴△ACB和△BDA是直角三角形,
在Rt△ACB和Rt△BDA中,,
∴Rt△ACB≌Rt△BDA(HL),
∴∠ABC=∠BAD,
∴AE=BE.
5.(2019 福建中考)如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.
【分析】由SAS证明△ADF≌△BCE,即可得出AF=CE.
【解答】证明:∵四边形ABCD是矩形,
∴∠D=∠B=90°,AD=BC,
在△ADF和△BCE中,,
∴△ADF≌△BCE(SAS),
∴AF=CE.
6.(2019 安徽中考)如图,点E在?ABCD内部,AF∥BE,DF∥CE.
(1)求证:△BCE≌△ADF;
(2)设?ABCD的面积为S,四边形AEDF的面积为T,求的值.
【分析】(1)根据ASA证明:△BCE≌△ADF;
(2)根据点E在?ABCD内部,可知:S△BEC+S△AED=S?ABCD,可得结论.
【解答】解:(1)∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠ABC+∠BAD=180°,
∵AF∥BE,
∴∠EBA+∠BAF=180°,
∴∠CBE=∠DAF,
同理得∠BCE=∠ADF,
在△BCE和△ADF中,
∵,
∴△BCE≌△ADF(ASA);
(2)∵点E在?ABCD内部,
∴S△BEC+S△AED=S?ABCD,
由(1)知:△BCE≌△ADF,
∴S△BCE=S△ADF,
∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED=S?ABCD,
∵?ABCD的面积为S,四边形AEDF的面积为T,
∴==2.
7.(2019 甘肃中考)如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.
(1)证明:△ADG≌△DCE;
(2)连接BF,证明:AB=FB.
【分析】(1)依据正方形的性质以及垂线的定义,即可得到∠ADG=∠C=90°,AD=DC,∠DAG=∠CDE,即可得出△ADG≌△DCE;
(2)延长DE交AB的延长线于H,根据△DCE≌△HBE,即可得出B是AH的中点,进而得到AB=FB.
【解答】解:(1)∵四边形ABCD是正方形,
∴∠ADG=∠C=90°,AD=DC,
又∵AG⊥DE,
∴∠DAG+∠ADF=90°=∠CDE+∠ADF,
∴∠DAG=∠CDE,
∴△ADG≌△DCE(ASA);
(2)如图所示,延长DE交AB的延长线于H,
∵E是BC的中点,
∴BE=CE,
又∵∠C=∠HBE=90°,∠DEC=∠HEB,
∴△DCE≌△HBE(ASA),
∴BH=DC=AB,
即B是AH的中点,
又∵∠AFH=90°,
∴Rt△AFH中,BF=AH=AB.
8.(2019 青海中考)如图,在△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形.
【分析】(1)由“AAS”可证△AFE≌△DBE;
(2)由一组对边平行且相等的四边形是平行四边形,可得四边形ADCF是平行四边形,由直角三角形的性质可得AD=CD,即可得四边形ADCF是菱形.
【解答】证明:(1)∵AF∥BC,
∴∠AFE=∠DBE
∵△ABC是直角三角形,AD是BC边上的中线,E是AD的中点,
∴AE=DE,BD=CD
在△AFE和△DBE中,
,
∴△AFE≌△DBE(AAS)
(2)由(1)知,AF=BD,且BD=CD,
∴AF=CD,且AF∥BC,
∴四边形ADCF是平行四边形
∵∠BAC=90°,D是BC的中点,
∴AD=BC=CD,
∴四边形ADCF是菱形.
9.(2019?新疆)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD中点,连接OE.过点C作CF∥BD交OE的延长线于点F,连接DF.
求证:(1)△ODE≌△FCE;
(2)四边形OCFD是矩形.
【分析】(1)根据两直线平行,内错角相等可得∠ODE=∠FCE,根据线段中点的定义可得CE=DE,然后利用“角边角”证明△ODE和△FCE全等;
(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据菱形的对角线互相垂直得出∠COD=90°,即可得出结论.
【解答】证明:(1)∵CF∥BD,
∴∠ODE=∠FCE,
∵E是CD中点,
∴CE=DE,
在△ODE和△FCE中,,
∴△ODE≌△FCE(ASA);
(2)∵△ODE≌△FCE,
∴OD=FC,
∵CF∥BD,
∴四边形OCFD是平行四边形,
∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠COD=90°,
∴四边形OCFD是矩形.
10.(2019?哈尔滨)已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.
(1)如图1,求证:AE=CF;
(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.
【分析】(1)由AAS证明△ABE≌△CDF,即可得出结论;
(2)由平行线的性质得出∠CBD=∠ADB=30°,由直角三角形的性质得出BE=AB,AE=AD,得出△ABE的面积=AB×AD=矩形ABCD的面积,由全等三角形的性质得出△CDF的面积═矩形ABCD的面积;作EG⊥BC于G,由直角三角形的性质得出EG=BE=×AB=AB,得出△BCE的面积=矩形ABCD的面积,同理:△ADF的面积=矩形ABCD的面积.
【解答】(1)证明:∵四边形ABCD是矩形,
∴AB=CD,AB∥CD,AD∥BC,
∴∠ABE=∠DF,
∵AE⊥BD于点E,CF⊥BD于点F,
∴∠AEB=∠CFD=90°,
在△ABE和△CDF中,,
∴△ABE≌△CDF(AAS),
∴AE=CF;
(2)解:△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=矩形ABCD面积的.理由如下:
∵AD∥BC,
∴∠CBD=∠ADB=30°,
∵∠ABC=90°,
∴∠ABE=60°,
∵AE⊥BD,
∴∠BAE=30°,
∴BE=AB,AE=AD,
∴△ABE的面积=BE×AE=×AB×AD=AB×AD=矩形ABCD的面积,
∵△ABE≌△CDF,
∴△CDF的面积═矩形ABCD的面积;
作EG⊥BC于G,如图所示:
∵∠CBD=30°,
∴EG=BE=×AB=AB,
∴△BCE的面积=BC×EG=BC×AB=BC×AB=矩形ABCD的面积,
同理:△ADF的面积=矩形ABCD的面积.
PAGE
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
页 1