【专题讲义】备战2020中考总复习精编重难点 第16讲 相似三角形及其应用(提高版+解析版)

文档属性

名称 【专题讲义】备战2020中考总复习精编重难点 第16讲 相似三角形及其应用(提高版+解析版)
格式 zip
文件大小 3.7MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2020-03-05 10:04:34

文档简介


中小学教育资源及组卷应用平台


【专题讲义】备战2020中考总复习精编重难点
第16讲 相似三角形及其应用(提高版)
【学生版】
一、考点知识梳理
【考点1 比例线段】
1.比例的相关概念及性质
(1)线段的比:两条线段的比是两条线段的长度之比.
(2)比例中项:如果=,即b2=ac,我们就把b叫做a,c的比例中项.
(3)比例的性质
性质1:=?ad=bc(a,b,c,d≠0).
性质2:如果=,那么=.
性质3:如果==…=(b+d+…+n≠0),则=(不唯一).
2.黄金分割:如果点C把线段AB分成两条线段,使=,那么点C叫做线段AC的黄金分割点,AC是BC与AB的比例中项,AC与AB的比叫做黄金比.
【考点2 相似三角形的判定及性质】
1.定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比叫做相似比.
2.性质:
(1)相似三角形的对应角相等;
(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;
(3)相似三角形的周长比等于相似比,面积比等于相似比的平方.
3.判定:
(1)两角对应相等,两三角形相似;
(2)两边对应成比例且夹角相等,两三角形相似;
(3)三边对应成比例,两三角形相似;
(4)两直角三角形的斜边和一条直角边对应成比例,两直角三角形相似.

【考点3 位似图形】
1.相似多边形的定义:对应角相等,对应边成比例的两个多边形叫做相似多边形,相似多边形对应边的比叫做它们的相似比.
2.相似多边形的性质:
(1)相似多边形的对应边成比例;
(2)相似多边形的对应角相等;
(3)相似多边形周长的比等于相似比,相似多边形面积的比等于相似比的平方.
3.位似图形的定义:如果两个图形不仅是相似图形而且每组对应点的连线交于一点,对应边互相平行(或在同一条直线上),那么这样的两个图形叫做位似图形,这个点叫做位似中心,相似比叫做位似比.
4.位似图形的性质:
(1)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k;
(2)位似图形上任意一对对应点到位似中心的距离之比等于位似比或相似比.
5.找位似中心的方法:将两个图形的各组对应点连接起来,若它们的直线或延长线相交于一点,则该点即是位似中心.
6.画位似图形的步骤:
(1)确定位似中心;
(2)确定原图形的关键点;
(3)确定位似比,即要将图形放大或缩小的倍数;
(4)作出原图形中各关键点的对应点;
(5)按原图形的连接顺序连接所作的各个对应点.
【考点4 相似三角形与几何图形】
相似三角形的知识在实际中应用非常广泛,主要是用来测量、计算那些不易直接测量的物体的高度或宽度.
二、考点分析
【考点1 比例线段】
【解题技巧】1.判断比例线段一定是四条线段成比例,但四个数值成比例不一定是四个数,比例中项是三个数。
2.黄金分割在现实生活中用途很广,要注意它的应用范围和条件,还要注意它的数值。


【例1】(2019 青海中考)(2019?青海)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=1.2,则DF的长为(  )

A.3.6 B.4.8 C.5 D.5.2
【举一反三1-1】(2019 陕西中考)如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为(  )

A.1 B. C.2 D.4
【举一反三1-2】(2019 辽宁沈阳中考模拟)已知==,且3a-2b+c=20,则2a-4b+c的值为____.
【举一反三1-3】(2019 北京海淀区中考模拟)如图1,在线段AB上找一点C,C把AB分为AC和CB两段,其中BC是较小的一段,如果BC?AB=AC2,那么称线段AB被点C黄金分割.为了增加美感,黄金分割经常被应用在绘画、雕塑、音乐、建筑等艺术领域.如图2,在我国古代紫禁城的中轴线上,太和门位于太和殿与内金水桥之间靠近内金水桥的一侧,三个建筑的位置关系满足黄金分割.已知太和殿到内金水桥的距离约为100丈,求太和门到太和殿之间的距离(的近似值取2.2).



【举一反三1-4】(2019 山东淄博中考模拟)已知,点C和点D是线段AB的黄金分割点,且线段AB长是方程x2﹣4x﹣1=0的根,求线段CD的长.


【考点2 相似三角形的判定及性质】
【解题技巧】1.判定三角形相似的几条思路:
(1)条件中若有平行线,可采用相似三角形的判定(1);
(2)条件中若有一对等角,可再找一对等角[用判定(1)]或再找夹边成比例[用判定(2)];
(3)条件中若有两边对应成比例,可找夹角相等;
(4)条件中若有一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例;
(5)条件中若有等腰条件,可找顶角相等,或找一个底角相等,也可找底和腰对应成比例.
2.应注意相似三角形的对应边成比例,若已知△ABC∽△DEF,列比例关系式时,对应字母的位置一定要写正确,才能得到正确的答案.如:=,此式正确.那么想一想,哪种情况是错误的呢?可以举例说明.
【例2】(2019 河北中考)(2019 安徽中考)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为(   )

A.3.6 B.4 C.4.8 D.5
【举一反三2-1】(2016 河北中考)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是(  )

A. B.
C. D.
【举一反三2-2】(2016 河南开封中考模拟)如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么,当t为何值时,△POQ与△AOB相似?









【举一反三2-3】(2019石家庄二十八中中考模拟)如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.
(1)求证:AC=AD+CE;
(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q.若点P与A,B两点不重合,求的值.









【举一反三2-4】(2017株洲中考)如图所示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.
(1)求证:△DAE≌△DCF;
(2)求证:△ABG∽△CFG.









【考点3 位似图形】
【解题技巧】1.位似图形的判断:
①两个图形必须是相似形;
②对应点的连线都经过同一点;
③对应边平行.
2.位似图形与坐标
在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.
【例3】(2019 吉林中考)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时同地测得一栋楼的影长为90m,则这栋楼的高度为______________m.





【举一反三3-1】(2017 河北中考)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比(  )
A.增加了10% B.减少了10%
C.增加了(1+10%) D.没有改变
【举一反三3-2】(2019 河北衡水中考模拟)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是____________________;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是____________________________.




【举一反三3-3】(2019 河北衡水中考模拟)如图,在平面直角坐标系中,正方形OABC和正方形ADEF的边OA、AD分别在x轴上,OA=2,AD=3,则正方形OABC和正方形ADEF位似中心的坐标是____________________________________.


【考点4 相似三角形与几何图形】
【解题技巧】1.首先掌握相似的性质和判定,再结合图形选择正确的判断方法,辅助线的添加是解题关键,添辅助线有一个重要原则是“构造相似三角形”.
2.三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.

【例4】(2019 广东中考)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN:S△ADM=1:4.其中正确的结论有(   )

A.1个 B.2个 C.3个 D.4个
【举一反三4-1】(2019 海南中考)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为(  )

A. B. C. D.

【举一反三4-2】(2019辽宁沈阳中考)如图,正方形ABCD的对角线AC上有一点E,且CE=4AE,点F在DC的延长线上,连接EF,过点E作EG⊥EF,交CB的延长线于点G,连接GF并延长,交AC的延长线于点P,若AB=5,CF=2,则线段EP的长是____________.

【举一反三4-3】(2019 陕西中考)如图,AC是⊙O的直径,AB是⊙O的一条弦,AP是⊙O的切线.作BM=AB并与AP交于点M,延长MB交AC于点E,交⊙O于点D,连接AD.
(1)求证:AB=BE;
(2)若⊙O的半径R=5,AB=6,求AD的长.



【举一反三4-4】(2019 安徽中考)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.
(1)求证:△PAB∽△PBC;
(2)求证:PA=2PC;
(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2?h3.









三、【达标测试】
(一)选择题
1.(2019 浙江杭州中考)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则(   )

A.= B.= C.= D.=


2.(2019 浙江温州中考)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为(   )

A. B. C. D.
3.(2019 重庆中考)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是(  )

A.2 B.3 C.4 D.5


4.(2019 河北辽宁沈阳中考)(2019?沈阳)已知△ABC∽△A'B'C',AD和A'D'是它们的对应中线,若AD=10,A'D'=6,则△ABC与△A'B'C'的周长比是(  )
A.3:5 B.9:25 C.5:3 D.25:9
5.(2019?哈尔滨)如图,在?ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD于点N,则下列式子一定正确的是(  )

A.= B.= C.= D.=
6.已知△ABC∽△A'B'C',AB=8,A'B'=6,则=(  )
A.2 B. C.3 D.


7.(2019 河北承德二中模拟)如图,已知△AOB和△A1OB1是以点O为位似中心的位似图形,且△AOB和△A1OB1的周长之比为1:2,点B的坐标为(﹣1,2),则点B1的坐标为(  )

A.(2,﹣4) B.(1,﹣4) C.(﹣1,4) D.(﹣4,2)
填空题
1.(2019 上海中考)在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是____.
2.(2019 青海中考)(2019?青海)如图是用杠杆撬石头的示意图,C是支点,当用力压杠杆的A端时,杠杆绕C点转动,另一端B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,已知杠杆的动力臂AC与阻力臂BC之比为5:1,要使这块石头滚动,至少要将杠杆的A端向下压____________cm.

3.(2019 内蒙呼和浩特中考)已知正方形ABCD的面积是2,E为正方形一边BC在从B到C方向的延长线上的一点,若CE=,连接AE,与正方形另外一边CD交于点F,连接BF并延长,与线段DE交于点G,则BG的长为____________________.
4.(2019?长春)教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.
例2 如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:==
证明:连结ED.
请根据教材提示,结合图①,写出完整的证明过程.
结论应用:在?ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F.
(1)如图②,若?ABCD为正方形,且AB=6,则OF的长为____________.
(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为,则?ABCD的面积为__________.


5.(2019 广东茂名中考模拟)如图,A是反比例函数y=(x>0)图象上的一点,点B、D在y轴正半轴上,△ABD是△COD关于点D的位似图形,且△ABD与△COD的位似比是1:3,△ABD的面积为1,则k的值为______________.

6.(2019 山东淄博中考模拟)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是______________________.

7.(2019 上海黄浦区中考模拟)(2019秋?黄浦区期中)在△ABC中,∠C=90°,AC=4,BC=3,D是边AB上的一点,E是边AC上的一点(D、E与端点不重合),如果△CDE与△ABC相似,那么CD的长是____________________.


8.(2019 河北张家口中考模拟)(2019秋?大观区校级期中)如图,在四边形ABCD中,AD∥BC,AD<BC,∠ABC=90°,且AB=3,点E是边AB上的动点,当△ADE,△BCE,△CDE两两相似时,则AE=______________________________.


解答题
1.(2019 河南中考)在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.
(1)观察猜想
如图1,当α=60°时,的值是____,直线BD与直线CP相交所成的较小角的度数是____.
(2)类比探究
如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.
(3)解决问题
当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.





2.(2019 湖北黄石中考)如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.
(1)求证:CD是⊙O的切线;
(2)求证:CE=CF;
(3)若BD=1,CD=,求弦AC的长.








3.(2019 江苏南京中考)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.
小明的作法
1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.
2.以点D为圆心,DG长为半径画弧,交AB于点E.
3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.
(1)证明小明所作的四边形DEFG是菱形.
(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.





4.(2019 河辽宁大连北中考)阅读下面材料,完成(1)﹣(3)题
数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:
小明:“通过观察和度量,发现∠BAE与∠DAC相等.”
小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”
……
老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”

(1)求证:∠BAE=∠DAC;
(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;
(3)直接写出的值(用含k的代数式表示).

5.(2019 上海中考)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.
(1)求证:BD=CD;
(2)如果AB2=AO?AD,求证:四边形ABDC是菱形.









6.(2019?宁夏)如图,在△ABC中,∠A=90°,AB=3,AC=4,点M,Q分别是边AB,BC上的动点(点M不与A,B重合),且MQ⊥BC,过点M作BC的平行线MN,交AC于点N,连接NQ,设BQ为x.
(1)试说明不论x为何值时,总有△QBM∽△ABC;
(2)是否存在一点Q,使得四边形BMNQ为平行四边形,试说明理由;
(3)当x为何值时,四边形BMNQ的面积最大,并求出最大值.







7.(2019?深圳)已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.
(1)求证:直线OD是⊙E的切线;
(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;
①当tan∠ACF=时,求所有F点的坐标____________________________(直接写出);
②求的最大值.







8.(2019 江西中考)在图1,2,3中,已知?ABCD,∠ABC=120°,点E为线段BC上的动点,连接AE,以AE为边向上作菱形AEFG,且∠EAG=120°.

(1)如图1,当点E与点B重合时,∠CEF=____________°;
(2)如图2,连接AF.
①填空:∠FAD______∠EAB(填“>”,“<“,“=”);
②求证:点F在∠ABC的平分线上;
(3)如图3,连接EG,DG,并延长DG交BA的延长线于点H,当四边形AEGH是平行四边形时,求的值.






PAGE



HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
页 1




中小学教育资源及组卷应用平台


【专题讲义】备战2020中考总复习精编重难点
第16讲 相似三角形及其应用(解析版)
【教师版】
一、考点知识梳理
【考点1 比例线段】
1.比例的相关概念及性质
(1)线段的比:两条线段的比是两条线段的长度之比.
(2)比例中项:如果=,即b2=ac,我们就把b叫做a,c的比例中项.
(3)比例的性质
性质1:=?ad=bc(a,b,c,d≠0).
性质2:如果=,那么=.
性质3:如果==…=(b+d+…+n≠0),则=(不唯一).
2.黄金分割:如果点C把线段AB分成两条线段,使=,那么点C叫做线段AC的黄金分割点,AC是BC与AB的比例中项,AC与AB的比叫做黄金比.
【考点2 相似三角形的判定及性质】
1.定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比叫做相似比.
2.性质:
(1)相似三角形的对应角相等;
(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;
(3)相似三角形的周长比等于相似比,面积比等于相似比的平方.
3.判定:
(1)两角对应相等,两三角形相似;
(2)两边对应成比例且夹角相等,两三角形相似;
(3)三边对应成比例,两三角形相似;
(4)两直角三角形的斜边和一条直角边对应成比例,两直角三角形相似.

【考点3 位似图形】
1.相似多边形的定义:对应角相等,对应边成比例的两个多边形叫做相似多边形,相似多边形对应边的比叫做它们的相似比.
2.相似多边形的性质:
(1)相似多边形的对应边成比例;
(2)相似多边形的对应角相等;
(3)相似多边形周长的比等于相似比,相似多边形面积的比等于相似比的平方.
3.位似图形的定义:如果两个图形不仅是相似图形而且每组对应点的连线交于一点,对应边互相平行(或在同一条直线上),那么这样的两个图形叫做位似图形,这个点叫做位似中心,相似比叫做位似比.
4.位似图形的性质:
(1)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k;
(2)位似图形上任意一对对应点到位似中心的距离之比等于位似比或相似比.
5.找位似中心的方法:将两个图形的各组对应点连接起来,若它们的直线或延长线相交于一点,则该点即是位似中心.
6.画位似图形的步骤:
(1)确定位似中心;
(2)确定原图形的关键点;
(3)确定位似比,即要将图形放大或缩小的倍数;
(4)作出原图形中各关键点的对应点;
(5)按原图形的连接顺序连接所作的各个对应点.
【考点4 相似三角形与几何图形】
相似三角形的知识在实际中应用非常广泛,主要是用来测量、计算那些不易直接测量的物体的高度或宽度.
二、考点分析
【考点1 比例线段】
【解题技巧】1.判断比例线段一定是四条线段成比例,但四个数值成比例不一定是四个数,比例中项是三个数。
2.黄金分割在现实生活中用途很广,要注意它的应用范围和条件,还要注意它的数值。

【例1】(2019 青海中考)(2019?青海)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=1.2,则DF的长为(  )

A.3.6 B.4.8 C.5 D.5.2
【答案】B.
【分析】根据平行线分线段成比例定理即可解决问题.
【解答】解:∵AD∥BE∥CF,
∴=,即=,
∴EF=3.6,
∴DF=EF+DE=3.6+1.2=4.8,
故选:B.
【举一反三1-1】(2019 陕西中考)如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为(  )

A.1 B. C.2 D.4
【答案】B.
【分析】由题意可证EG∥BC,EG=2,HF∥AD,HF=2,可得四边形EHFG为平行四边形,即可求解.
【解答】解:∵BE=2AE,DF=2FC,∴,=
∵G、H分别是AC的三等分点
∴,=

∴EG∥BC
∴,且BC=6
∴EG=2,
同理可得HF∥AD,HF=2
∴四边形EHFG为平行四边形,且EG和HF间距离为1
∴S四边形EHFG=2×1=2,
故选:C.
【举一反三1-2】(2019 辽宁沈阳中考模拟)已知==,且3a-2b+c=20,则2a-4b+c的值为____.
【答案】-6.
【分析】比例的性质中常见题型,把a,b,c用含有相同字母的式子表达出来,再代入解方程即可.
【解析】∵==
设:===k
∴a=5k,b=4k,c=3k
又∵3a-2b+c=20
∴15k-8k+3k=20
∴10k=20
∴k=2
∴2a-4b+c=10k-16k+3k=-3k
∴2a-4b+c=-6
故答案为-6.
【举一反三1-3】(2019 北京海淀区中考模拟)如图1,在线段AB上找一点C,C把AB分为AC和CB两段,其中BC是较小的一段,如果BC?AB=AC2,那么称线段AB被点C黄金分割.为了增加美感,黄金分割经常被应用在绘画、雕塑、音乐、建筑等艺术领域.如图2,在我国古代紫禁城的中轴线上,太和门位于太和殿与内金水桥之间靠近内金水桥的一侧,三个建筑的位置关系满足黄金分割.已知太和殿到内金水桥的距离约为100丈,求太和门到太和殿之间的距离(的近似值取2.2).

【分析】根据黄金分割的概念列出比例式,计算即可.
【解答】解:设太和门到太和殿的距离为x丈,
由题意可得,x2=100(100﹣x)
解得,,(舍去)
则x≈﹣50+50×2.2=60,
答:太和门到太和殿的距离为60丈.
【举一反三1-4】(2019 山东淄博中考模拟)已知,点C和点D是线段AB的黄金分割点,且线段AB长是方程x2﹣4x﹣1=0的根,求线段CD的长.
【分析】设AC>BC,AD<BD,根据黄金分割的定义先计算出AC,BD,再利用CD=AC+BD﹣AB进行计算.
【解答】解:设AC>BC,AD<BD,
∵线段AB长是方程x2﹣4x﹣1=0的根,
∴AB=2+,(负值已舍去)
根据题意得AC=AB=×(2+)=,
同理可得,BD=AB=,
则CD=AC+BD﹣AB=2×﹣(2+)=1.
即线段CD的长为1.

【考点2 相似三角形的判定及性质】
【解题技巧】1.判定三角形相似的几条思路:
(1)条件中若有平行线,可采用相似三角形的判定(1);
(2)条件中若有一对等角,可再找一对等角[用判定(1)]或再找夹边成比例[用判定(2)];
(3)条件中若有两边对应成比例,可找夹角相等;
(4)条件中若有一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例;
(5)条件中若有等腰条件,可找顶角相等,或找一个底角相等,也可找底和腰对应成比例.
2.应注意相似三角形的对应边成比例,若已知△ABC∽△DEF,列比例关系式时,对应字母的位置一定要写正确,才能得到正确的答案.如:=,此式正确.那么想一想,哪种情况是错误的呢?可以举例说明.
【例2】(2019 河北中考)(2019 安徽中考)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为(   )

A.3.6 B.4 C.4.8 D.5
【答案】B.
【分析】根据题意和三角形相似的判定和性质,可以求得CD的长,本题得以解决.
【解答】解:作DH∥EG交AB于点H,则△AEG∽△ADH,
∴,
∵EF⊥AC,∠C=90°,
∴∠EFA=∠C=90°,
∴EF∥CD,
∴△AEF∽△ADC,
∴,
∴,
∵EG=EF,
∴DH=CD,
设DH=x,则CD=x,
∵BC=12,AC=6,
∴BD=12﹣x,
∵EF⊥AC,EF⊥EG,DH∥EG,
∴EG∥AC∥DH,
∴△BDH∽△BCA,
∴,
即,
解得,x=4,
∴CD=4,
故选:B.
【举一反三2-1】(2016 河北中考)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是(  )

A. B.
C. D.
【答案】C.
【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.
【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;
B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;
C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;
D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.
故选:C.
【举一反三2-2】(2016 河南开封中考模拟)如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么,当t为何值时,△POQ与△AOB相似?

【分析】本题要分△OPQ∽△OAB和△OPQ∽△OBA两种情况进行求解,可根据各自得出的对应成比例相等求出t的值.
【解答】解:①若△POQ∽△AOB时,=,即=,
整理得:12﹣2t=t,
解得:t=4.
②若△POQ∽△BOA时,=,即=,
整理得:6﹣t=2t,
解得:t=2.
∵0≤t≤6,
∴t=4和t=2均符合题意,
∴当t=4或t=2时,△POQ与△AOB相似.
【举一反三2-3】(2019石家庄二十八中中考模拟)如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.
(1)求证:AC=AD+CE;
(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q.若点P与A,B两点不重合,求的值.

【分析】(1)证△ADB≌△CBE
(2)过点Q作QH⊥BC于点H.
则△ADP∽△HPQ,△BHQ∽△BCE,可以证明对应线段成比例=,=,然后列方程确定的值。
【解答】解:(1)∵∠A=∠C=90°,DB⊥BE,
∴∠ADB+∠ABD=90°,∠ABD+∠EBC=90°.
∴∠ADB=∠EBC.
又AD=BC,∴△ADB≌△CBE(ASA),
∴AB=CE.∴AC=BC+AB=AD+CE;
(2)过点Q作QH⊥BC于点H.
则△ADP∽△HPQ,△BHQ∽△BCE,
∴=,=.
设AP=x,QH=y,则有=,
∴BH=,PH=+5-x,
∴=,即(x-5)·(3y-5x)=0.
又点P不与A,B重合,
∴x≠5,即x-5≠0.
∴3y-5x=0,即3y=5x.
∴==.
【举一反三2-4】(2017株洲中考)如图所示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.
(1)求证:△DAE≌△DCF;
(2)求证:△ABG∽△CFG.
【分析】(1)由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;(2)由第(1)问的全等三角形的对应角相等,根据等量代换得到∠BAG=∠BCF,再由对顶角相等,利用两对角对应角相等的三角形相似即可得证.
【解答】证明:(1)∵正方形ABCD,等腰直角三角形EDF,
∴∠ADC=∠EDF=90°,
AD=CD,DE=DF,
∴∠ADE+∠ADF=∠ADF+∠CDF,
∴∠ADE=∠CDF,
在△ADE和△CDF中,,
∴△ADE≌△CDF;
(2)延长BA,交ED于点M.
∵△ADE≌△CDF,∴∠EAD=∠FCD,
即∠EAM+∠MAD=∠BCD+∠BCF.
∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF.
∵∠EAM=∠BAG,∴∠BAG=∠BCF.
∵∠AGB=∠CGF,∴△ABG∽△CFG.



【考点3 位似图形】
【解题技巧】1.位似图形的判断:
①两个图形必须是相似形;
②对应点的连线都经过同一点;
③对应边平行.
2.位似图形与坐标
在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.
【例3】(2019 吉林中考)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时同地测得一栋楼的影长为90m,则这栋楼的高度为   m.
【答案】54.
【分析】根据同一时刻物高与影长成正比即可得出结论.
【解答】解:设这栋楼的高度为hm,
∵在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为60m,
∴=,解得h=54(m).
故答案为:54.
【举一反三3-1】(2017 河北中考)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比(  )
A.增加了10% B.减少了10%
C.增加了(1+10%) D.没有改变
【答案】D.
【分析】根据两个三角形三边对应成比例,这两个三角形相似判断出两个三角形相似,再根据相似三角形对应角相等解答.
【解答】解:∵△ABC的每条边长增加各自的10%得△A′B′C′,
∴△ABC与△A′B′C′的三边对应成比例,
∴△ABC∽△A′B′C′,
∴∠B′=∠B.
故选:D.
【举一反三3-2】(2019 河北衡水中考模拟)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是   ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是   .

【答案】(1)(2,﹣2).(2)(1,0).
【分析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.


【解答】解:(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);
(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),
故答案为:(1)(2,﹣2);(2)(1,0)

【举一反三3-3】(2019 河北衡水中考模拟)如图,在平面直角坐标系中,正方形OABC和正方形ADEF的边OA、AD分别在x轴上,OA=2,AD=3,则正方形OABC和正方形ADEF位似中心的坐标是   .

【答案】(﹣4,0)或(2,).
【分析】直接利用位似图形的性质结合比例式得出位似中心的坐标即可.
【解答】解:连接FC并延长交x轴于点M,
由题意可得:△MOC∽△MAF,
则==,
∴=,
解得:MO=4,
故M点的坐标为:(﹣4,0).
连接DC,OE,交点为N,
可得△CNO∽△END,
则==,
解得:AN=,
故N点坐标为:(2,),
综上所述:正方形OABC和正方形ADEF位似中心的坐标是(﹣4,0)或(2,).
故答案为:(﹣4,0)或(2,).

【考点4 相似三角形与几何图形】
【解题技巧】1.首先掌握相似的性质和判定,再结合图形选择正确的判断方法,辅助线的添加是解题关键,添辅助线有一个重要原则是“构造相似三角形”.
2.三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.


【例4】(2019 广东中考)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN:S△ADM=1:4.其中正确的结论有(   )

A.1个 B.2个 C.3个 D.4个
【答案】C.
【分析】由正方形的性质得到FG=BE=2,∠FGB=90°,AD=4,AH=2,∠BAD=90°,求得∠HAN=∠FGN,AH=FG,根据全等三角形的定理定理得到△ANH≌△GNF(AAS),故①正确;根据全等三角形的性质得到∠AHN=∠HFG,推出∠AFH≠∠AHF,得到∠AFN≠∠HFG,故②错误;根据全等三角形的性质得到AN=AG=1,根据相似三角形的性质得到∠AHN=∠AMG,根据平行线的性质得到∠HAK=∠AMG,根据直角三角形的性质得到FN=2NK;故③正确;根据矩形的性质得到DM=AG=2,根据三角形的面积公式即可得到结论.
【解答】解:∵四边形EFGB是正方形,EB=2,
∴FG=BE=2,∠FGB=90°,
∵四边形ABCD是正方形,H为AD的中点,
∴AD=4,AH=2,
∠BAD=90°,
∴∠HAN=∠FGN,AH=FG,
∵∠ANH=∠GNF,
∴△ANH≌△GNF(AAS),故①正确;
∴∠AHN=∠HFG,
∵AG=FG=2=AH,
∴AF=FG=AH,
∴∠AFH≠∠AHF,
∴∠AFN≠∠HFG,故②错误;
∵△ANH≌△GNF,
∴AN=AG=1,
∵GM=BC=4,
∴==2,
∵∠HAN=∠AGM=90°,
∴△AHN∽△GMA,
∴∠AHN=∠AMG,
∵AD∥GM,
∴∠HAK=∠AMG,
∴∠AHK=∠HAK,
∴AK=HK,
∴AK=HK=NK,
∵FN=HN,
∴FN=2NK;故③正确;
∵延长FG交DC于M,
∴四边形ADMG是矩形,
∴DM=AG=2,
∵S△AFN=AN?FG=2×1=1,S△ADM=AD?DM=×4×2=4,
∴S△AFN:S△ADM=1:4故④正确,
故选:C.

【举一反三4-1】(2019 海南中考)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为(  )

A. B. C. D.
【答案】B.
【分析】根据勾股定理求出AC,根据角平分线的定义、平行线的性质得到∠QBD=∠BDQ,得到QB=QD,根据相似三角形的性质列出比例式,计算即可.
【解答】解:∵∠C=90°,AB=5,BC=4,
∴AC==3,
∵PQ∥AB,
∴∠ABD=∠BDQ,又∠ABD=∠QBD,
∴∠QBD=∠BDQ,
∴QB=QD,
∴QP=2QB,
∵PQ∥AB,
∴△CPQ∽△CAB,
∴==,即==,
解得,CP=,
∴AP=CA﹣CP=,
故选:B.
【举一反三4-2】(2019辽宁沈阳中考)如图,正方形ABCD的对角线AC上有一点E,且CE=4AE,点F在DC的延长线上,连接EF,过点E作EG⊥EF,交CB的延长线于点G,连接GF并延长,交AC的延长线于点P,若AB=5,CF=2,则线段EP的长是   .

【答案】.
【分析】如图,作FH⊥PE于H.利用勾股定理求出EF,再证明△CEF∽△FEP,可得EF2=EC?EP,由此即可解决问题.
【解答】解:如图,作FH⊥PE于H.

∵四边形ABCD是正方形,AB=5,
∴AC=5,∠ACD=∠FCH=45°,
∵∠FHC=90°,CF=2,
∴CH=HF=,
∵CE=4AE,
∴EC=4,AE=,
∴EH=5,
在Rt△EFH中,EF2=EH2+FH2=(5)2+()2=52,
∵∠GEF=∠GCF=90°,
∴E,G,F,C四点共圆,
∴∠EFG=∠ECG=45°,
∴∠ECF=∠EFP=135°,
∵∠CEF=∠FEP,
∴△CEF∽△FEP,
∴=,
∴EF2=EC?EP,
∴EP==.
故答案为.


【举一反三4-3】(2019 陕西中考)如图,AC是⊙O的直径,AB是⊙O的一条弦,AP是⊙O的切线.作BM=AB并与AP交于点M,延长MB交AC于点E,交⊙O于点D,连接AD.
(1)求证:AB=BE;
(2)若⊙O的半径R=5,AB=6,求AD的长.

【分析】(1)根据切线的性质得出∠EAM=90°,等腰三角形的性质∠MAB=∠AMB,根据等角的余角相等得出∠BAE=∠AEB,即可证得AB=BE;
(2)证得△ABC∽△EAM,求得∠C=∠AME,AM=,由∠D=∠C,求得∠D=∠AMD,即可证得AD=AM=.
【解答】(1)证明:∵AP是⊙O的切线,
∴∠EAM=90°,
∴∠BAE+∠MAB=90°,∠AEB+∠AMB=90°.
又∵AB=BM,
∴∠MAB=∠AMB,
∴∠BAE=∠AEB,
∴AB=BE
(2)解:连接BC
∵AC是⊙O的直径,
∴∠ABC=90°
在Rt△ABC中,AC=10,AB=6,
∴BC=8,
∵BE=AB=BM,
∴EM=12,
由(1)知,∠BAE=∠AEB,
∴△ABC∽△EAM
∴∠C=∠AME,=,
即=,
∴AM=
又∵∠D=∠C,
∴∠D=∠AMD
∴AD=AM=.

【举一反三4-4】(2019 安徽中考)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.
(1)求证:△PAB∽△PBC;
(2)求证:PA=2PC;
(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2?h3.

【分析】(1)利用等式的性质判断出∠PBC=∠PAB,即可得出结论;
(2)由(1)的结论得出,进而得出,即可得出结论;
(3)先判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△PAB∽△PBC,判断出,即可得出结论.
【解答】解:(1)∵∠ACB=90°,AB=BC,
∴∠ABC=45°=∠PBA+∠PBC
又∠APB=135°,
∴∠PAB+∠PBA=45°
∴∠PBC=∠PAB
又∵∠APB=∠BPC=135°,
∴△PAB∽△PBC
(2)∵△PAB∽△PBC

在Rt△ABC中,AB=AC,


∴PA=2PC
(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,
∴PF=h1,PD=h2,PE=h3,
∵∠CPB+∠APB=135°+135°=270°
∴∠APC=90°,
∴∠EAP+∠ACP=90°,
又∵∠ACB=∠ACP+∠PCD=90°
∴∠EAP=∠PCD,
∴Rt△AEP∽Rt△CDP,
∴,即,
∴h3=2h2
∵△PAB∽△PBC,
∴,

∴.
即:h12=h2?h3.

三、【达标测试】
(一)选择题
1.(2019 浙江杭州中考)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则(   )

A.= B.= C.= D.=
【答案】C.
【分析】先证明△ADN∽△ABM得到=,再证明△ANE∽△AMC得到=,则=,从而可对各选项进行判断.
【解答】解:∵DN∥BM,
∴△ADN∽△ABM,
∴=,
∵NE∥MC,
∴△ANE∽△AMC,
∴=,
∴=.
故选:C.


2.(2019 浙江温州中考)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为(   )

A. B. C. D.
【答案】C.
【分析】如图,连接ALGL,PF.利用相似三角形的性质求出a与b的关系,再求出面积比即可.


【解答】解:如图,连接ALGL,PF.

由题意:S矩形AMLD=S阴=a2﹣b2,PH=,
∵点A,L,G在同一直线上,AM∥GN,
∴△AML∽△GNL,
∴=,
∴=,
整理得a=3b,
∴===,
故选:C.


3.(2019 重庆中考)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是(  )

A.2 B.3 C.4 D.5
【答案】C.
【分析】直接利用相似三角形的性质得出对应边之间的关系进而得出答案.
【解答】解:∵△ABO∽△CDO,
∴=,
∵BO=6,DO=3,CD=2,
∴=,
解得:AB=4.
故选:C.
4.(2019 河北辽宁沈阳中考)(2019?沈阳)已知△ABC∽△A'B'C',AD和A'D'是它们的对应中线,若AD=10,A'D'=6,则△ABC与△A'B'C'的周长比是(  )
A.3:5 B.9:25 C.5:3 D.25:9
【答案】C.
【分析】相似三角形的周长比等于对应的中线的比.
【解答】解:∵△ABC∽△A'B'C',AD和A'D'是它们的对应中线,AD=10,A'D'=6,
∴△ABC与△A'B'C'的周长比=AD:A′D′=10:6=5:3.
故选:C.
5.(2019?哈尔滨)如图,在?ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD于点N,则下列式子一定正确的是(  )

A.= B.= C.= D.=
【答案】D.
【分析】根据平行四边形的性质以及相似三角形的性质.
【解答】解:
∵在?ABCD中,EM∥AD
∴易证四边形AMEN为平行四边形
∴易证△BEM∽△BAD∽△END
∴==,A项错误
=,B项错误
==,C项错误
==,D项正确
故选:D.
6.已知△ABC∽△A'B'C',AB=8,A'B'=6,则=(  )
A.2 B. C.3 D.
【答案】B.
【分析】直接利用相似三角形的性质求解.
【解答】解:∵△ABC∽△A'B'C',
∴===.
故选:B.
7.(2019 河北承德二中模拟)如图,已知△AOB和△A1OB1是以点O为位似中心的位似图形,且△AOB和△A1OB1的周长之比为1:2,点B的坐标为(﹣1,2),则点B1的坐标为(  )

A.(2,﹣4) B.(1,﹣4) C.(﹣1,4) D.(﹣4,2)
【答案】A.
【分析】过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,依据△AOB和△A1OB1相似,且周长之比为1:2,即可得到=,再根据△BOC∽△B1OD,可得OD=2OC=4,B1D=2BC=2,进而得出点B1的坐标为(2,﹣4).
【解答】解:如图,过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,
∵点B的坐标为(﹣1,2),
∴BC=1,OC=2,
∵△AOB和△A1OB1相似,且周长之比为1:2,
∴=,
∵∠BCO=∠B1DO=90°,∠BOC=∠B1OD,
∴△BOC∽△B1OD,
∴OD=2OC=4,B1D=2BC=2,
∴点B1的坐标为(2,﹣4),
故选:A.
填空题
1.(2019 上海中考)在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是  .
【答案】.
【分析】根据勾股定理求得AB=5,设AD=x,则BD=5﹣x,根据全等三角形的性质得出C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,即可求得∠C1D1B1=∠BDC,根据等角的余角相等求得∠B1C1D1=∠B,即可证得△C1B1D∽△BCD,根据其性质得出=2,解得求出AD的长.
【解答】解:如图,∵在△ABC和△A1B1C1中,∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,
∴AB==5,
设AD=x,则BD=5﹣x,
∵△ACD≌△C1A1D1,
∴C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,
∴∠C1D1B1=∠BDC,
∵∠B=90°﹣∠A,∠B1C1D1=90°﹣∠A1C1D1,
∴∠B1C1D1=∠B,
∴△C1B1D∽△BCD,
∴=,即=2,
解得x=,
∴AD的长为,
故答案为.



2.(2019 青海中考)(2019?青海)如图是用杠杆撬石头的示意图,C是支点,当用力压杠杆的A端时,杠杆绕C点转动,另一端B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,已知杠杆的动力臂AC与阻力臂BC之比为5:1,要使这块石头滚动,至少要将杠杆的A端向下压  cm.

【答案】.
【分析】首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点A向下压的长度.
【解答】解:如图;AM、BN都与水平线垂直,即AM∥BN;
易知:△ACM∽△BCN;
∴=,
∵杠杆的动力臂AC与阻力臂BC之比为5:1,
∴=,即AM=5BN;
∴当BN≥10cm时,AM≥50cm;
故要使这块石头滚动,至少要将杠杆的端点A向下压50cm.
故答案为:50.

3.(2019 内蒙呼和浩特中考)已知正方形ABCD的面积是2,E为正方形一边BC在从B到C方向的延长线上的一点,若CE=,连接AE,与正方形另外一边CD交于点F,连接BF并延长,与线段DE交于点G,则BG的长为   .
【答案】.
【分析】根据题意画出,根据已知条件可得到点F是CD的中点,通过作辅助线,将问题转化证△HDG∽△BEG,得出对应边成比例,由相似比转化为BG等于BH的三分之二,而BH可以通过勾股定理求出,使问题得以解决.
【解答】解:如图:延长AD、BG相交于点H,
∵正方形ABCD的面积是2,
∴AB=BC=CD=DA=,
又∵CE=,△EFC∽△EAB,
∴,
即:F是CD的中点,
∵AH∥BE,
∴∠H=∠FBC,
∠BCF=∠HDF=90°
∴△BCF≌△HDF (AAS),
∴DH=BC=,
∵AH∥BE,
∴∠H=∠FBC,∠HDG=∠BEG
∴△HDG∽△BEG,
∴,
在Rt△ABH中,BH=,
∴BG=,
故答案为:

4.(2019?长春)教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.
例2 如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:==
证明:连结ED.
请根据教材提示,结合图①,写出完整的证明过程.
结论应用:在?ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F.
(1)如图②,若?ABCD为正方形,且AB=6,则OF的长为   .
(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为,则?ABCD的面积为   .


【答案】6.
【分析】教材呈现:如图①,连结ED.根据三角形中位线定理可得DE∥AC,DE=AC,那么△DEG∽△ACG,由相似三角形对应边成比例以及比例的性质即可证明==;
结论应用:(1)如图②.先证明△BEF∽△DAF,得出BF=DF,那么BF=BD,又BO=BD,可得OF=OB﹣BF=BD,由正方形的性质求出BD=6,即可求出OF=;
(2)如图③,连接OE.由(1)易证=2.根据同高的两个三角形面积之比等于底边之比得出△BEF与△OEF的面积比==2,同理,△CEG与△OEG的面积比=2,那么△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,所以△BOC的面积=,进而求出?ABCD的面积=4×=6.
【解答】教材呈现:
证明:如图①,连结ED.
∵在△ABC中,D,E分别是边BC,AB的中点,
∴DE∥AC,DE=AC,
∴△DEG∽△ACG,
∴===2,
∴==3,
∴==;
结论应用:
(1)解:如图②.
∵四边形ABCD为正方形,E为边BC的中点,对角线AC、BD交于点O,
∴AD∥BC,BE=BC=AD,BO=BD,
∴△BEF∽△DAF,
∴==,
∴BF=DF,
∴BF=BD,
∵BO=BD,
∴OF=OB﹣BF=BD﹣BD=BD,
∵正方形ABCD中,AB=6,
∴BD=6,
∴OF=.
故答案为;
(2)解:如图③,连接OE.
由(1)知,BF=BD,OF=BD,
∴=2.
∵△BEF与△OEF的高相同,
∴△BEF与△OEF的面积比==2,
同理,△CEG与△OEG的面积比=2,
∴△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,
∴△BOC的面积=,
∴?ABCD的面积=4×=6.
故答案为6.



5.(2019 广东茂名中考模拟)如图,A是反比例函数y=(x>0)图象上的一点,点B、D在y轴正半轴上,△ABD是△COD关于点D的位似图形,且△ABD与△COD的位似比是1:3,△ABD的面积为1,则k的值为   .

【答案】8.
【分析】根据△ABD是△COD关于点D的位似图形,且△ABD与△COD的位似比是1:3,得出==,进而得出假设BD=x,AE=4x,DO=3x,AB=y,根据△ABD的面积为1,求出xy=2即可得出答案.
【解答】解:过A作AE⊥x轴,
∵△ABD是△COD关于点D的位似图形,
且△ABD与△COD的位似是1:3,
∴=,
∴OE=AB,
∴==.
假设BD=x,AB=y
∴DO=3x,AE=4x,CO=3y,
∵△ABD的面积为1,
∴xy=1,
∴xy=2,
∴AB?AE=4xy=8,
即:k=4xy=8.
故答案是:8.



6.(2019 山东淄博中考模拟)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是   .

【答案】(,).
【分析】由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.
【解答】解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,
∴OA:OD=2:3,
∵点A的坐标为(1,0),
即OA=1,
∴OD=,
∵四边形ODEF是正方形,
∴DE=OD=.
∴E点的坐标为:(,).
故答案是:(,).
7.(2019 上海黄浦区中考模拟)(2019秋?黄浦区期中)在△ABC中,∠C=90°,AC=4,BC=3,D是边AB上的一点,E是边AC上的一点(D、E与端点不重合),如果△CDE与△ABC相似,那么CD的长是   .
【答案】或.
【分析】分类讨论:当△ABC∽△CDE,如图1,则∠CED=∠ACB=90°,∠DCE=∠A,证明BD=AD即可解决问题;当△ABC∽△DCE,如图2,则∠CED=∠ACB=90°,∠DCE=∠B,接着证明CD⊥AB,利用面积法可计算出CD=;当△ABC∽△CED,如图3,∠CDE=∠ACB=90°,∠DCE=∠A,证明CD为斜边上的中线,则CD=DA=DB=AB=.
【解答】解:∵∠ACB=90°,AC=4,BC=3,
∴AB===5,
当△ABC∽△CDE,如图1,则∠CED=∠ACB=90°,∠DCE=∠A,
∴△ADC为等腰三角形,
∴CE=AE,
∵ED∥BC,
∴BD=AD,
∴CD=AB=,
当△ABC∽△DCE,如图2,则∠CED=∠ACB=90°,∠DCE=∠B,
而∠BCD+∠DCE=90°,
∴∠B+∠BCD=90°,
∴CD⊥AB,
∴CD==,
当△ABC∽△CED,如图3,∠CDE=∠ACB=90°,∠DCE=∠A,
∴DC=DA,
∵∠A+∠B=90°,∠DCE+∠BCD=90°,
∴∠B+∠BCD=90°,
∴DB=DC,
∴CD=DA=DB=AB=,
综上所述,CD的长为或.
故答案为或.



8.(2019 河北张家口中考模拟)(2019秋?大观区校级期中)如图,在四边形ABCD中,AD∥BC,AD<BC,∠ABC=90°,且AB=3,点E是边AB上的动点,当△ADE,△BCE,△CDE两两相似时,则AE=  .

【答案】或1.
【分析】分情况讨论:∠CED=90°和∠CDE=90°,利用角平分线的性质和直角三角形30度角的性质分别可得AE的长.
【解答】解:分两种情况:
①当∠CED=90°时,如图1,
过E作EF⊥CD于F,

∵AD∥BC,AD<BC,
∴AB与CD不平行,
∴当△ADE、△BCE、△CDE两两相似时,
∴∠BEC=∠CDE=∠ADE,
∵∠A=∠B=∠CED=90°,
∴∠BCE=∠DCE,
∴AE=EF,EF=BE,
∴AE=BE=AB=,
②当∠CDE=90°时,如图2,

∵当△ADE、△BCE、△CDE两两相似时,
∴∠CEB=∠CED=∠AED=60°,
∴∠BCE=∠DCE=30°,
∵∠A=∠B=90°,
∴BE=ED=2AE,
∵AB=3,
∴AE=1,
综上,AE的值为或1.
故答案为:或1.


解答题
1.(2019 河南中考)在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.
(1)观察猜想
如图1,当α=60°时,的值是 1 ,直线BD与直线CP相交所成的较小角的度数是 60° .
(2)类比探究
如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.
(3)解决问题
当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.

【分析】(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.证明△CAP≌△BAD(SAS),即可解决问题.
(2)如图2中,设BD交AC于点O,BD交PC于点E.证明△DAB∽△PAC,即可解决问题.
(3)分两种情形:①如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.证明AD=DC即可解决问题.
②如图3﹣2中,当点P在线段CD上时,同法可证:DA=DC解决问题.
【解答】解:(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.

∵∠PAD=∠CAB=60°,
∴∠CAP=∠BAD,
∵CA=BA,PA=DA,
∴△CAP≌△BAD(SAS),
∴PC=BD,∠ACP=∠ABD,
∵∠AOC=∠BOE,
∴∠BEO=∠CAO=60°,
∴=1,线BD与直线CP相交所成的较小角的度数是60°,
故答案为1,60°.
(2)如图2中,设BD交AC于点O,BD交PC于点E.

∵∠PAD=∠CAB=45°,
∴∠PAC=∠DAB,
∵==,
∴△DAB∽△PAC,
∴∠PCA=∠DBA,==,
∵∠EOC=∠AOB,
∴∠CEO=∠OABB=45°,
∴直线BD与直线CP相交所成的小角的度数为45°.
(3)如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.

∵CE=EA,CF=FB,
∴EF∥AB,
∴∠EFC=∠ABC=45°,
∵∠PAO=45°,
∴∠PAO=∠OFH,
∵∠POA=∠FOH,
∴∠H=∠APO,
∵∠APC=90°,EA=EC,
∴PE=EA=EC,
∴∠EPA=∠EAP=∠BAH,
∴∠H=∠BAH,
∴BH=BA,
∵∠ADP=∠BDC=45°,
∴∠ADB=90°,
∴BD⊥AH,
∴∠DBA=∠DBC=22.5°,
∵∠ADB=∠ACB=90°,
∴A,D,C,B四点共圆,
∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,
∴∠DAC=∠DCA=22.5°,
∴DA=DC,设AD=a,则DC=AD=a,PD=a,
∴==2﹣.
如图3﹣2中,当点P在线段CD上时,同法可证:DA=DC,设AD=a,则CD=AD=a,PD=a,

∴PC=a﹣a,
∴==2+.
2.(2019 湖北黄石中考)如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.
(1)求证:CD是⊙O的切线;
(2)求证:CE=CF;
(3)若BD=1,CD=,求弦AC的长.

【分析】(1)连接OC,可证得∠CAD=∠BCD,由∠CAD+∠ABC=90°,可得出∠OCD=90°,即结论得证;
(2)证明△ABC≌△AFC可得CB=CF,又CB=CE,则CE=CF;
(3)证明△CBD∽△DCA,可求出DA的长,求出AB长,设BC=a,AC=a,则由勾股定理可得AC的长.
【解答】解:(1)连接OC,

∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CAD+∠ABC=90°,
∵CE=CB,
∴∠CAE=∠CAB,
∵∠BCD=∠CAE,
∴∠CAB=∠BCD,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠OCB+∠BCD=90°,
∴∠OCD=90°,
∴CD是⊙O的切线;
(2)∵∠BAC=∠CAE,∠ACB=∠ACF=90°,AC=AC,
∴△ABC≌△AFC(ASA),
∴CB=CF,
又∵CB=CE,
∴CE=CF;
(3)∵∠BCD=∠CAD,∠ADC=∠CDB,
∴△CBD∽△DCA,
∴,
∴,
∴DA=2,
∴AB=AD﹣BD=2﹣1=1,
设BC=a,AC=a,由勾股定理可得:,
解得:a=,
∴.


3.(2019 江苏南京中考)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.
小明的作法
1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.
2.以点D为圆心,DG长为半径画弧,交AB于点E.
3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.
(1)证明小明所作的四边形DEFG是菱形.
(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.

【分析】(1)根据邻边相等的四边形是菱形证明即可.
(2)求出几种特殊位置的CD的值判断即可.
【解答】(1)证明:∵DE=DG,EF=DE,
∴DG=EF,
∵DG∥EF,
∴四边形DEFG是平行四边形,
∵DG=DE,
∴四边形DEFG是菱形.
(2)如图1中,当四边形DEFG是正方形时,设正方形的边长为x.

在Rt△ABC中,∵∠C=90°,AC=3,BC=4,
∴AB==5,
则CD=x,AD=x,
∵AD+CD=AC,
∴+x=3,
∴x=,
∴CD=x=,
观察图象可知:0≤CD<时,菱形的个数为0.
如图2中,当四边形DAEG是菱形时,设菱形的边长为m.

∵DG∥AB,
∴=,
∴=,
解得m=,
∴CD=3﹣=,
如图3中,当四边形DEBG是菱形时,设菱形的边长为n.

∵DG∥AB,
∴=,
∴=,
∴n=,
∴CG=4﹣=,
∴CD==,
观察图象可知:当0≤CD<或<CD<3时,菱形的个数为0,当CD=或<CD≤时,菱形的个数为1,当<CD≤时,菱形的个数为2.


4.(2019 河辽宁大连北中考)阅读下面材料,完成(1)﹣(3)题
数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:
小明:“通过观察和度量,发现∠BAE与∠DAC相等.”
小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”
……
老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”

(1)求证:∠BAE=∠DAC;
(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;
(3)直接写出的值(用含k的代数式表示).
【分析】(1)利用三角形的外角性质可求解;
(2)由直角三角形的性质和角平分线的性质可得AF=FC,AF=BF,通过证明△ABG∽△BCA和△ABF∽△BAD,利用相似三角形的性质可求解;
(3)通过证明△ABH∽△ACB,可得AB2=AC×AH,设BD=m,AB=km,由勾股定理可求AC的长,可求AH,HC的长,即可求解.
【解答】证明:(1)∵AB=AD
∴∠ABD=∠ADB
∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE
∴∠BAE=∠DAC
(2)设∠DAC=α=∠BAE,∠C=β
∴∠ABC=∠ADB=α+β
∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC
∴∠EAC=2β
∵AF平分∠EAC
∴∠FAC=∠EAF=β
∴∠FAC=∠C,∠ABE=∠BAF=α+β
∴AF=FC,AF=BF
∴AF=BC=BF
∵∠ABE=∠BAF,∠BGA=∠BAC=90°
∴△ABG∽△BCA

∵∠ABE=∠BAF,∠ABE=∠AFB
∴△ABF∽△BAD
∴,且AB=kBD,AF=BC=BF
∴k=,即

(3)∵∠ABE=∠BAF,∠BAC=∠AGB=90°
∴∠ABH=∠C,且∠BAC=∠BAC
∴△ABH∽△ACB

∴AB2=AC×AH
设BD=m,AB=km,

∴BC=2k2m
∴AC==km
∴AB2=AC×AH
(km)2=km×AH
∴AH=
∴HC=AC﹣AH=km﹣=

5.(2019 上海中考)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.
(1)求证:BD=CD;
(2)如果AB2=AO?AD,求证:四边形ABDC是菱形.

【分析】(1)连接BC,根据AB=AC,OB=OA=OC,即可得出AD垂直平分BC,根据线段垂直平分线性质求出即可;
(2)根据相似三角形的性质和判定求出∠ABO=∠ADB=∠BAO,求出BD=AB,再根据菱形的判定推出即可.
【解答】证明:(1)如图1,连接BC,OB,OC,

∵AB、AC是⊙O的两条弦,且AB=AC,
∴A在BC的垂直平分线上,
∵OB=OA=OC,
∴O在BC的垂直平分线上,
∴AO垂直平分BC,
∴BD=CD;
(2)如图2,连接OB,

∵AB2=AO?AD,
∴=,
∵∠BAO=∠DAB,
∴△ABO∽△ADB,
∴∠OBA=∠ADB,
∵OA=OB,
∴∠OBA=∠OAB,
∴∠OAB=∠BDA,
∴AB=BD,
∵AB=AC,BD=CD,
∴AB=AC=BD=CD,
∴四边形ABDC是菱形.
6.(2019?宁夏)如图,在△ABC中,∠A=90°,AB=3,AC=4,点M,Q分别是边AB,BC上的动点(点M不与A,B重合),且MQ⊥BC,过点M作BC的平行线MN,交AC于点N,连接NQ,设BQ为x.
(1)试说明不论x为何值时,总有△QBM∽△ABC;
(2)是否存在一点Q,使得四边形BMNQ为平行四边形,试说明理由;
(3)当x为何值时,四边形BMNQ的面积最大,并求出最大值.

【分析】(1)根据题意得到∠MQB=∠CAB,根据相似三角形的判定定理证明;
(2)根据对边平行且相等的四边形是平行四边形解答;
(3)根据勾股定理求出BC,根据相似三角形的性质用x表示出QM、BM,根据梯形面积公式列出二次函数解析式,根据二次函数性质计算即可.
【解答】解:(1)∵MQ⊥BC,
∴∠MQB=90°,
∴∠MQB=∠CAB,又∠QBM=∠ABC,
∴△QBM∽△ABC;
(2)当BQ=MN时,四边形BMNQ为平行四边形,
∵MN∥BQ,BQ=MN,
∴四边形BMNQ为平行四边形;
(3)∵∠A=90°,AB=3,AC=4,
∴BC==5,
∵△QBM∽△ABC,
∴==,即==,
解得,QM=x,BM=x,
∵MN∥BC,
∴=,即=,
解得,MN=5﹣x,
则四边形BMNQ的面积=×(5﹣x+x)×x=﹣(x﹣)2+,
∴当x=时,四边形BMNQ的面积最大,最大值为.
7.(2019?深圳)已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.
(1)求证:直线OD是⊙E的切线;
(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;
①当tan∠ACF=时,求所有F点的坐标   (直接写出);
②求的最大值.

【分析】(1)连接ED,证明∠EDO=90°即可,可通过半径相等得到∠EDB=∠EBD,根据直角三角形斜边上中线等于斜边一半得DO=BO=AO,∠ODB=∠OBD,得证;
(2)①分两种情况:a)F位于线段AB上,b)F位于BA的延长线上;过F作AC的垂线,构造相似三角形,应用相似三角形性质可求得点F坐标;
②应用相似三角形性质和三角函数值表示出=,令y=CG2(64﹣CG2)=﹣(CG2﹣32)2+322,应用二次函数最值可得到结论.
【解答】解:(1)证明:如图1,连接DE,∵BC为圆的直径,
∴∠BDC=90°,
∴∠BDA=90°
∵OA=OB
∴OD=OB=OA
∴∠OBD=∠ODB
∵EB=ED
∴∠EBD=∠EDB
∴EBD+∠OBD=∠EDB+∠ODB
即:∠EBO=∠EDO
∵CB⊥x轴
∴∠EBO=90°
∴∠EDO=90°
∵点D在⊙E上
∴直线OD为⊙E的切线.
(2)①如图2,当F位于AB上时,过F作F1N⊥AC于N,
∵F1N⊥AC
∴∠ANF1=∠ABC=90°
∴△ANF∽△ABC

∵AB=6,BC=8,
∴AC===10,即AB:BC:AC=6:8:10=3:4:5
∴设AN=3k,则NF1=4k,AF1=5k
∴CN=CA﹣AN=10﹣3k
∴tan∠ACF===,解得:k=


即F1(,0)
如图3,当F位于BA的延长线上时,过F2作F2M⊥CA于M,
∵△AMF2∽△ABC
∴设AM=3k,则MF2=4k,AF2=5k
∴CM=CA+AM=10+3k
∴tan∠ACF=
解得:
∴AF2=5k=2
OF2=3+2=5
即F2(5,0)
故答案为:F1(,0),F2(5,0).
②方法1:如图4,过G作GH⊥BC于H,
∵CB为直径
∴∠CGB=∠CBF=90°
∴△CBG∽△CFB

∴BC2=CG?CF
∴===≤
∴当H为BC中点,即GH=BC时,的最大值=.
方法2:设∠BCG=α,则sinα=,cosα=,
∴sinαcosα=
∵(sinα﹣cosα)2≥0,即:sin2α+cos2α≥2sinαcosα
∵sin2α+cos2α=1,
∴sinαcosα≤,即≤
∴的最大值=.






8.(2019 江西中考)在图1,2,3中,已知?ABCD,∠ABC=120°,点E为线段BC上的动点,连接AE,以AE为边向上作菱形AEFG,且∠EAG=120°.

(1)如图1,当点E与点B重合时,∠CEF=   °;
(2)如图2,连接AF.
①填空:∠FAD = ∠EAB(填“>”,“<“,“=”);
②求证:点F在∠ABC的平分线上;
(3)如图3,连接EG,DG,并延长DG交BA的延长线于点H,当四边形AEGH是平行四边形时,求的值.
【分析】(1)根据菱形的性质计算;
(2)①证明∠DAB=∠FAE=60°,根据角的运算解答;
②作FM⊥BC于M,FN⊥BA交BA的延长线于N,证明△AFN≌△EFM,根据全等三角形的性质得到FN=FM,根据角平分线的判定定理证明结论;
(3)根据直角三角形的性质得到GH=2AH,证明四边形ABEH为菱形,根据菱形的性质计算,得到答案.
【解答】解:(1)∵四边形AEFG是菱形,
∴∠AEF=180°﹣∠EAG=60°,
∴∠CEF=∠AEC﹣∠AEF=60°,
故答案为:60°;
(2)①∵四边形ABCD是平行四边形,
∴∠DAB=180°﹣∠ABC=60°,
∵四边形AEFG是菱形,∠EAG=120°,
∴∠FAE=60°,
∴∠FAD=∠EAB,
故答案为:=;
②作FM⊥BC于M,FN⊥BA交BA的延长线于N,
则∠FNB=∠FMB=90°,
∴∠NFM=60°,又∠AFE=60°,
∴∠AFN=∠EFM,
∵EF=EA,∠FAE=60°,
∴△AEF为等边三角形,
∴FA=FE,
在△AFN和△EFM中,

∴△AFN≌△EFM(AAS)
∴FN=FM,又FM⊥BC,FN⊥BA,
∴点F在∠ABC的平分线上;
(3)∵四边形AEFG是菱形,∠EAG=120°,
∴∠AGF=60°,
∴∠FGE=∠AGE=30°,
∵四边形AEGH为平行四边形,
∴GE∥AH,
∴∠GAH=∠AGE=30°,∠H=∠FGE=30°,
∴∠GAN=90°,又∠AGE=30°,
∴GN=2AN,
∵∠DAB=60°,∠H=30°,
∴∠ADH=30°,
∴AD=AH=GE,
∵四边形ABCD为平行四边形,
∴BC=AD,
∴BC=GE,
∵四边形ABEH为平行四边形,∠HAE=∠EAB=30°,
∴平行四边形ABEN为菱形,
∴AB=AN=NE,
∴GE=3AB,
∴=3.






PAGE



HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
页 1



同课章节目录