【专题讲义】备战2020中考总复习精编重难点 第22讲 图形的变换(提高版+解析版)

文档属性

名称 【专题讲义】备战2020中考总复习精编重难点 第22讲 图形的变换(提高版+解析版)
格式 zip
文件大小 3.6MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2020-03-05 10:13:42

文档简介


中小学教育资源及组卷应用平台


【专题讲义】备战2020中考总复习精编重难点
第22讲 图形的变换(提高版)
【学生版】
一、考点知识梳理
【考点1 图形的平移】
1.定义:在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.
2.三大要素:一是平移的起点,二是平移的方向,三是平移的距离.
3.性质:平移前后,对应线段平行且相等、对应角相等;各对应点所连接的线段平行(或在同一条直线上)且相等;平移前后的图形全等.
4.作图步骤:
(1)根据题意,确定平移的方向和平移的距离;
(2)找出原图形的关键点;
(3)按平移方向和平移距离、平移各个关键点,得到各关键点的对应点;
(4)按原图形依次连接对应点,得到平移后的图形.
【考点2 图形的折叠和轴对称】
轴对称图形的定义:如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫轴对称图形,这条直线叫做对称轴
2.轴对称的定义:如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴
3.轴对称的性质:对应线段相等 对应角相等 对应点所连的线段被对称轴垂直平分
4.轴对称图形与轴对称的区别 (1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;对称轴不一定只有一条
(2)轴对称是指两个图形的位置关系,必须涉及两个图形;只有一条对称轴
5.轴对称图形与轴对称的关系 (1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称
(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形
6.翻折变换(折叠问题)实质上就是轴对称变换.
7.折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.


【考点3 图形的旋转和中心对称】
1.中心对称图形的定义: 如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心
2.中心对称
(1)定义:如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称
(2)性质:对应点连线被对称中心平分;对应线段相等;对应角相等
3.中心对称图形与中心对称的区别:中心对称图形是指具有某种特性的一个图形 中心对称是指两个图形的关系
4.中心对称图形与中心对称的联系:把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称;把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形
5.图形的旋转
(1)定义:在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.
(2)三大要素:旋转中心、旋转方向和__旋转角度__.
(3)性质:对应点到旋转中心的距离相等;每对对应点与旋转中心所连线段的夹角等于旋转角;旋转前后的图形全等.
6.作图步骤:
(1)根据题意,确定旋转中心、旋转方向及旋转角;
(2)找出原图形的关键点;
(3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;
(4)按原图形依次连接对应点,得到旋转后的图形.
考点分析
【考点1 图形的平移】
【解题技巧】(1)平移变换与坐标变化
①向右平移a个单位,坐标P(x,y)?P(x+a,y)
①向左平移a个单位,坐标P(x,y)?P(x﹣a,y)
①向上平移b个单位,坐标P(x,y)?P(x,y+b)
①向下平移b个单位,坐标P(x,y)?P(x,y﹣b)
(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)
【例1】(2019 辽宁大连中考)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(  )
A.(3,﹣1) B.(3,3) C.(1,1) D.(5,1)
【举一反三1-1】(2019 江苏徐州中考)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为   .
【举一反三1-2】(2019?广西)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)
(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;
(2)请画出与△ABC关于y轴对称的△A2B2C2;
(3)请写出A1、A2的坐标.

【举一反三1-3】(2019 安徽中考)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.
(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.
(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)



【考点2 图形的折叠和轴对称】
【解题技巧】
凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.主要存在一下几种情况;
1.与三角形结合:
(1)若涉及直角,则优先考虑直角三角形的性质(勾股定理及斜边上的中线等于斜边的一半),若为含特殊角的直角三角形,则应利用其边角关系计算;
(2)若涉及两边(角)相等,则利用等腰三角形的相关性质计算,若存在60°角,则利用等边三角形性质进行相关计算,一般会作出高线构造特殊角的直角三角形进行求解;
(3)若含有中位线,则需利用中位线的位置及数量关系进行量的代换.
2.与四边形结合:
(1)与平行四边形、矩形、菱形、正方形结合,往往会利用其特殊性质求解;
(2)若为一般的四边形,则可通过构造特殊的三角形或四边形求解.
首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.
【例2】(2019 北京中考)下列倡导节约的图案中,是轴对称图形的是(  )
A. B.
C. D.
【举一反三2-1】(2019 湖北黄石中考)如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时=(   )

A. B. C. D.


【举一反三2-2】(2019 江苏徐州中考)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是(  )
A. B. C. D.
【举一反三2-3】(2019?兰州)如图,边长为的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,折痕DF交AC于点M,则OM=(  )

A. B. C.﹣1 D.﹣1
【举一反三2-4】(2019吉林中考)如图,在四边形ABCD中,AB=10,BD⊥AD.若将△BCD沿BD折叠,点C与边AB的中点E恰好重合,则四边形BCDE的周长为   .


【考点3 图形的旋转和中心对称】
【解题技巧】1.常见的中心对称图形:平行四边形、矩形、菱形、正方形、正六边形、圆等.
坐标系中的旋转问题:
2.关于原点对称的点的坐标的应用.其基础知识为:点P(x,y)关于原点对称点的坐标为(-x,-y),在具体问题中一般根据坐标特点构建方程组来求解,常用到的关系式:点P(a,b),P1(m,n)关于原点对称,则有
3.坐标系内的旋转作图问题.与一般的旋转作图类似,其不同点在于若是作关于原点的中心对称图形,可以根据点的坐标规律,直接在坐标系内找到对应点的坐标,描点后连线.
4.旋转图形的作法:
根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形;旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.
【例3】(2019 甘肃中考)下列四个图案中,是中心对称图形的是(  )
A. B. C. D.
【举一反三3-1】(2019 河南中考)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为(  )

A.(10,3) B.(﹣3,10) C.(10,﹣3) D.(3,﹣10)
【举一反三3-2】(2019 湖北黄石中考)如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B'的坐标是(  )

A.(﹣1,2) B.(1,4) C.(3,2) D.(﹣1,0)


【举一反三3-3】(2019?武汉)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.
问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是   .

【举一反三3-4】(2019 海南中考)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB=3,AC=2,且α+β=∠B,则EF=   .




【举一反三3-5】(2019 福建中考)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.
(1)当点E恰好在AC上时,如图1,求∠ADE的大小;
(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.





三、【达标测试】
(一)选择题
1.(2019 福建中考)下列图形中,一定既是轴对称图形又是中心对称图形的是(  )
A.等边三角形 B.直角三角形 C.平行四边形 D.正方形
2.(2019 广东中考)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是(  )
A. B. C. D.
3.(2019 湖北黄石中考)下列图形中,既是轴对称图形又是中心对称图形的是(  )
A. B. C. D.
4.(2019 吉林中考)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为(  )

A.30° B.90° C.120° D.180°
5.(2019 江苏南京中考)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是(  )

A.①④ B.②③ C.②④ D.③④
6.(2019 辽宁大连中考)下列所述图形中,既是轴对称图形又是中心对称图形的是(  )
A.等腰三角形 B.等边三角形 C.菱形 D.平行四边形
7.(2019 辽宁大连中考)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为(  )

A.2 B.4 C.3 D.2


8.(2019 天津中考)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是(  )
A. B. C. D.
9.(2019 云南中考)下列图形既是轴对称图形,又是中心对称图形的是(  )
A. B. C. D.
10.(2019 重庆中考)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为(  )

A. B. C. D.
填空题
1.(2019 甘肃中考)如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=   .

2.(2019 陕西中考)如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为   .

3.(2019 上海中考)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是   .

4.(2019 天津中考)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为   .

5.(2019 浙江杭州中考)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于   .



6.(2019?青海)如图,在直角坐标系中,已知点A(3,2),将△ABO绕点O逆时针方向旋转180°后得到△CDO,则点C的坐标是   .

7.(2019?济南)如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于  .

8.(2019?深圳)如图,在正方形ABCD中,BE=1,将BC沿CE翻折,使B点对应点刚好落在对角线AC上,将AD沿AF翻折,使D点对应点刚好落在对角线AC上,求EF=   .

解答题
1.(2019 辽宁大连中考)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).
(1)填空:t的值为   (用含m的代数式表示)
(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;
(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.
2.(2019山西中考)综合与实践
动手操作:
第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.
第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.
第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME.如图5,图中的虚线为折痕.
问题解决:
(1)在图5中,∠BEC的度数是   ,的值是   .
(2)在图5中,请判断四边形EMGF的形状,并说明理由;
(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:   .



3.(2019?济南)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.

(1)求a和k的值;
(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.
①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求的值;
②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三形,求所有满足条件的m的值.


4.(2019?济南)小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.

(一)猜测探究
在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.
(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是   ,NB与MC的数量关系是   ;
(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.


(二)拓展应用
如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=60°,∠B1A1C1=75°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旋转75°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.
5.(2019?沈阳)思维启迪:
(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是   米.
思维探索:
(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.
①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是   ;
②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;
③当α=150°时,若BC=3,DE=l,请直接写出PC2的值.











6.(2019?宁夏)将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(,0),与s轴相交于点Q.
(1)试确定三角板ABC的面积;
(2)求平移前AB边所在直线的解析式;
(3)求s关于m的函数关系式,并写出Q点的坐标.






7.(2019?成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,求A'C+B'C的最小值.











8.(2019?济南)如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.
(1)求抛物线C的函数解析式及顶点G的坐标;
(2)如图2,直线l:y=kx﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;
(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP=∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.







PAGE



HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
页 1




中小学教育资源及组卷应用平台


【专题讲义】备战2020中考总复习精编重难点
第22讲 图形的变换(解析版)
【教师版】
一、考点知识梳理
【考点1 图形的平移】
1.定义:在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.
2.三大要素:一是平移的起点,二是平移的方向,三是平移的距离.
3.性质:平移前后,对应线段平行且相等、对应角相等;各对应点所连接的线段平行(或在同一条直线上)且相等;平移前后的图形全等.
4.作图步骤:
(1)根据题意,确定平移的方向和平移的距离;
(2)找出原图形的关键点;
(3)按平移方向和平移距离、平移各个关键点,得到各关键点的对应点;
(4)按原图形依次连接对应点,得到平移后的图形.
【考点2 图形的折叠和轴对称】
轴对称图形的定义:如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫轴对称图形,这条直线叫做对称轴
2.轴对称的定义:如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴
3.轴对称的性质:对应线段相等 对应角相等 对应点所连的线段被对称轴垂直平分
4.轴对称图形与轴对称的区别 (1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;对称轴不一定只有一条
(2)轴对称是指两个图形的位置关系,必须涉及两个图形;只有一条对称轴
5.轴对称图形与轴对称的关系 (1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称
(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形
6.翻折变换(折叠问题)实质上就是轴对称变换.
7.折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
【考点3 图形的旋转和中心对称】
1.中心对称图形的定义: 如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心
2.中心对称
(1)定义:如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称
(2)性质:对应点连线被对称中心平分;对应线段相等;对应角相等
3.中心对称图形与中心对称的区别:中心对称图形是指具有某种特性的一个图形 中心对称是指两个图形的关系
4.中心对称图形与中心对称的联系:把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称;把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形
5.图形的旋转
(1)定义:在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.
(2)三大要素:旋转中心、旋转方向和__旋转角度__.
(3)性质:对应点到旋转中心的距离相等;每对对应点与旋转中心所连线段的夹角等于旋转角;旋转前后的图形全等.
6.作图步骤:
(1)根据题意,确定旋转中心、旋转方向及旋转角;
(2)找出原图形的关键点;
(3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;
(4)按原图形依次连接对应点,得到旋转后的图形.
考点分析
【考点1 图形的平移】
【解题技巧】(1)平移变换与坐标变化
①向右平移a个单位,坐标P(x,y)?P(x+a,y)
①向左平移a个单位,坐标P(x,y)?P(x﹣a,y)
①向上平移b个单位,坐标P(x,y)?P(x,y+b)
①向下平移b个单位,坐标P(x,y)?P(x,y﹣b)
(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)
【例1】(2019 辽宁大连中考)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(  )
A.(3,﹣1) B.(3,3) C.(1,1) D.(5,1)
【答案】A.
【分析】根据向下平移,横坐标不变、纵坐标相减列式计算即可得解.
【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),
故选:A.
【举一反三1-1】(2019 江苏徐州中考)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为   .
【答案】y=(x﹣4)2.
【分析】设原来的抛物线解析式为:y=ax2.利用待定系数法确定函数关系式;然后利用平移规律得到平移后的解析式,将点P的坐标代入即可.
【解答】解:设原来的抛物线解析式为:y=ax2(a≠0).
把P(2,2)代入,得2=4a,
解得a=.
故原来的抛物线解析式是:y=x2.
设平移后的抛物线解析式为:y=(x﹣b)2.
把P(2,2)代入,得2=(2﹣b)2.
解得b=0(舍去)或b=4.
所以平移后抛物线的解析式是:y=(x﹣4)2.
故答案是:y=(x﹣4)2.
【举一反三1-2】(2019?广西)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)
(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;
(2)请画出与△ABC关于y轴对称的△A2B2C2;
(3)请写出A1、A2的坐标.

【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用轴对称的性质得出对应点位置进而得出答案;
(3)利用所画图象得出对应点坐标.
【解答】解:(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B2C2,即为所求;
(3)A1(2,3),A2(﹣2,﹣1).



【举一反三1-3】(2019 安徽中考)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.
(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.
(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)

【分析】(1)直接利用平移的性质得出C,D点位置,进而得出答案;
(2)直接利用菱形的判定方法进而得出答案.
【解答】解:(1)如图所示:线段CD即为所求;
(2)如图:菱形CDEF即为所求,答案不唯一.

【考点2 图形的折叠和轴对称】
【解题技巧】
凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.主要存在一下几种情况;
1.与三角形结合:
(1)若涉及直角,则优先考虑直角三角形的性质(勾股定理及斜边上的中线等于斜边的一半),若为含特殊角的直角三角形,则应利用其边角关系计算;
(2)若涉及两边(角)相等,则利用等腰三角形的相关性质计算,若存在60°角,则利用等边三角形性质进行相关计算,一般会作出高线构造特殊角的直角三角形进行求解;
(3)若含有中位线,则需利用中位线的位置及数量关系进行量的代换.
2.与四边形结合:
(1)与平行四边形、矩形、菱形、正方形结合,往往会利用其特殊性质求解;
(2)若为一般的四边形,则可通过构造特殊的三角形或四边形求解.
首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.
【例2】(2019 北京中考)下列倡导节约的图案中,是轴对称图形的是(  )
A. B.
C. D.
【答案】C.
【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.
【解答】解:A、不是轴对称图形,故此选项错误;
B、不是轴对称图形,故此选项错误;
C、是轴对称图形,故此选项正确;
D、不是轴对称图形,故此选项错误.
故选:C.
【举一反三2-1】(2019 湖北黄石中考)如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时=(   )

A. B. C. D.
【答案】B.
【分析】设BD与AF交于点M.设AB=a,AD=a,根据矩形的性质可得△ABE、△CDE都是等边三角形,利用折叠的性质得到BM垂直平分AF,BF=AB=a,DF=DA=a.解直角△BGM,求出BM,再表示DM,由△ADM∽△GBM,求出a=2,再证明CF=CD=2.作B点关于AD的对称点B′,连接B′E,设B′E与AD交于点H,则此时BH+EH=B′E,值最小.建立平面直角坐标系,得出B(3,2),B′(3,﹣2),E(0,),利用待定系数法求出直线B′E的解析式,得到H(1,0),然后利用两点间的距离公式求出BH=4,进而求出==.
【解答】解:如图,设BD与AF交于点M.设AB=a,AD=a,
∵四边形ABCD是矩形,
∴∠DAB=90°,tan∠ABD==,
∴BD=AC==2a,∠ABD=60°,
∴△ABE、△CDE都是等边三角形,
∴BE=DE=AE=CE=AB=CD=a.
∵将△ABD沿BD折叠,点A的对应点为F,
∴BM垂直平分AF,BF=AB=a,DF=DA=a.
在△BGM中,∵∠BMG=90°,∠GBM=30°,BG=2,
∴GM=BG=1,BM=GM=,
∴DM=BD﹣BM=2a﹣.
∵矩形ABCD中,BC∥AD,
∴△ADM∽△GBM,
∴=,即=,
∴a=2,
∴BE=DE=AE=CE=AB=CD=2,AD=BC=6,BD=AC=4.
易证∠BAF=∠FAC=∠CAD=∠ADB=∠BDF=∠CDF=30°,
∴△ADF是等边三角形,
∵AC平分∠DAF,
∴AC垂直平分DF,
∴CF=CD=2.
作B点关于AD的对称点B′,连接B′E,设B′E与AD交于点H,则此时BH+EH=B′E,值最小.
如图,建立平面直角坐标系,则A(3,0),B(3,2),B′(3,﹣2),E(0,),
易求直线B′E的解析式为y=﹣x+,
∴H(1,0),
∴BH==4,
∴==.
故选:B.


【举一反三2-2】(2019 江苏徐州中考)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是(  )
A. B. C. D.
【答案】D.
【分析】根据轴对称图形的概念求解可得.
【解答】解:

不是轴对称图形,
故选:D.
【举一反三2-3】(2019?兰州)如图,边长为的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,折痕DF交AC于点M,则OM=(  )

A. B. C.﹣1 D.﹣1
【答案】D.
【分析】根据正方形的性质得到AB=AD=BC=CD=,∠DCB=∠COD=∠BOC=90°,OD=OC,求得BD=AB=2,得到OD=BO=OC=1,根据折叠的性质得到DE=DC=,DF⊥CE,求得OE=﹣1,根据全等三角形的性质即可得到结论.
【解答】解:∵四边形ABCD是正方形,
∴AB=AD=BC=CD=,∠DCB=∠COD=∠BOC=90°,OD=OC,
∴BD=AB=2,
∴OD=BO=OC=1,
∵将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,
∴DE=DC=,DF⊥CE,
∴OE=﹣1,∠EDF+∠FED=∠ECO+∠OEC=90°,
∴∠ODM=∠ECO,
在△OEC与△OMD中,,
△OEC≌△OMD(ASA),
∴OM=OE=﹣1,
故选:D.
【举一反三2-4】(2019吉林中考)如图,在四边形ABCD中,AB=10,BD⊥AD.若将△BCD沿BD折叠,点C与边AB的中点E恰好重合,则四边形BCDE的周长为   .

【答案】20.
【分析】根据直角三角形斜边上中线的性质,即可得到DE=BE=AB=5,再根据折叠的性质,即可得到四边形BCDE的周长为5×4=20.
【解答】解:∵BD⊥AD,点E是AB的中点,
∴DE=BE=AB=5,
由折叠可得,CB=BE,CD=ED,
∴四边形BCDE的周长为5×4=20,
故答案为:20.


【考点3 图形的旋转和中心对称】
【解题技巧】1.常见的中心对称图形:平行四边形、矩形、菱形、正方形、正六边形、圆等.
坐标系中的旋转问题:
2.关于原点对称的点的坐标的应用.其基础知识为:点P(x,y)关于原点对称点的坐标为(-x,-y),在具体问题中一般根据坐标特点构建方程组来求解,常用到的关系式:点P(a,b),P1(m,n)关于原点对称,则有
3.坐标系内的旋转作图问题.与一般的旋转作图类似,其不同点在于若是作关于原点的中心对称图形,可以根据点的坐标规律,直接在坐标系内找到对应点的坐标,描点后连线.
4.旋转图形的作法:
根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形;旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.


【例3】(2019 甘肃中考)下列四个图案中,是中心对称图形的是(  )
A. B. C. D.
【答案】A.
【分析】根据中心对称图形的概念对各选项分析判断即可得解.
【解答】解:A.此图案是中心对称图形,符合题意;
B.此图案不是中心对称图形,不合题意;
C.此图案不是中心对称图形,不合题意;
D.此图案不是中心对称图形,不合题意;
故选:A.


【举一反三3-1】(2019 河南中考)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为(  )

A.(10,3) B.(﹣3,10) C.(10,﹣3) D.(3,﹣10)
【答案】D.
【分析】先求出AB=6,再利用正方形的性质确定D(﹣3,10),由于70=4×17+2,所以第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时旋转前后的点D关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D的坐标.
【解答】解:∵A(﹣3,4),B(3,4),
∴AB=3+3=6,
∵四边形ABCD为正方形,
∴AD=AB=6,
∴D(﹣3,10),
∵70=4×17+2,
∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,
∴点D的坐标为(3,﹣10).
故选:D.
【举一反三3-2】(2019 湖北黄石中考)如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B'的坐标是(  )

A.(﹣1,2) B.(1,4) C.(3,2) D.(﹣1,0)
【答案】C.
【分析】根据旋转可得:CB'=CB=2,∠BCB'=90°,可得B'的坐标.


【解答】解:如图所示,

由旋转得:CB'=CB=2,∠BCB'=90°,
∵四边形ABCD是正方形,且O是AB的中点,
∴OB=1,
∴B'(2+1,2),即B'(3,2),
故选:C.
【举一反三3-3】(2019?武汉)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.
问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是   .

【答案】2,
【分析】(1)在BC上截取BG=PD,通过三角形全等证得AG=AP,BG=DP,得出△AGP是等边三角形,得出AP=GP,则PA+PC=GP+PC=GC=PE,即可证得结论;
(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.
【解答】(1)证明:如图1,在BC上截取BG=PD,
在△ABG和△ADP中

∴△ABG≌△ADP(SAS),
∴AG=AP,BG=DP,
∴GC=PE,
∵∠GAP=∠BAD=60°,
∴△AGP是等边三角形,
∴AP=GP,
∴PA+PC=GP+PC=GC=PE
∴PA+PC=PE;
(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.
∵△MGD和△OME是等边三角形
∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,
∴∠GMO=∠DME
在△GMO和△DME中

∴△GMO≌△DME(SAS),
∴OG=DE
∴NO+GO+MO=DE+OE+NO
∴当D、E、O、M四点共线时,NO+GO+MO值最小,
∵∠NMG=75°,∠GMD=60°,
∴∠NMD=135°,
∴∠DMF=45°,
∵MG=.
∴MF=DF=4,
∴NF=MN+MF=6+4=10,
∴ND===2,
∴MO+NO+GO最小值为2,
故答案为2,


【举一反三3-4】(2019 海南中考)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB=3,AC=2,且α+β=∠B,则EF=   .

【答案】
【分析】由旋转的性质可得AE=AB=3,AC=AF=2,由勾股定理可求EF的长.
【解答】解:由旋转的性质可得AE=AB=3,AC=AF=2,
∵∠B+∠BAC=90°,且α+β=∠B,
∴∠BAC+α+β=90°
∴∠EAF=90°
∴EF==
故答案为:
【举一反三3-5】(2019 福建中考)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.
(1)当点E恰好在AC上时,如图1,求∠ADE的大小;
(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.

【分析】(1)如图1,利用旋转的性质得CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,再根据等腰三角形的性质和三角形内角和计算出∠CAD,从而利用互余和计算出∠ADE的度数;
(2)如图2,利用直角三角形斜边上的中线性质得到BF=AC,利用含30度的直角三角形三边的关系得到AB=AC,则BF=AB,再根据旋转的性质得到∠BCE=∠ACD=60°,CB=CE,DE=AB,从而得到DE=BF,△ACD和△BCE为等边三角形,接着证明△CFD≌△ABC得到DF=BC,然后根据平行四边形的判定方法得到结论.
【解答】(1)解:如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,
∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,
∵CA=CD,
∴∠CAD=∠CDA=(180°﹣30°)=75°,
∴∠ADE=90°﹣75°=25°;
(2)证明:如图2,
∵点F是边AC中点,
∴BF=AC,
∵∠ACB=30°,
∴AB=AC,
∴BF=AB,
∵△ABC绕点A顺时针旋转60得到△DEC,
∴∠BCE=∠ACD=60°,CB=CE,DE=AB,
∴DE=BF,△ACD和△BCE为等边三角形,
∴BE=CB,
∵点F为△ACD的边AC的中点,
∴DF⊥AC,
易证得△CFD≌△ABC,
∴DF=BC,
∴DF=BE,
而BF=DE,
∴四边形BEDF是平行四边形.
三、【达标测试】
(一)选择题
1.(2019 福建中考)下列图形中,一定既是轴对称图形又是中心对称图形的是(  )
A.等边三角形 B.直角三角形 C.平行四边形 D.正方形
【答案】D.
【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【解答】解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;
B、直角三角形不是轴对称图形,也不是中心对称图形,故本选项错误;
C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;
D、正方形既是轴对称图形,又是中心对称图形,故此选项正确.
故选:D.
2.(2019 广东中考)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是(  )
A. B. C. D.
【答案】C.
【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项错误;
C、既是轴对称图形,也是中心对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误.
故选:C.
3.(2019 湖北黄石中考)下列图形中,既是轴对称图形又是中心对称图形的是(  )
A. B. C. D.
【答案】D.
【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;
B、不是轴对称图形,是中心对称图形,故本选项错误;
C、是轴对称图形,不是中心对称图形,故本选项错误;
D、既是轴对称图形,又是中心对称图形,故此选项正确.
故选:D.
4.(2019 吉林中考)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为(  )

A.30° B.90° C.120° D.180°
【答案】C.
【分析】根据图形的对称性,用360°除以3计算即可得解.
【解答】解:∵360°÷3=120°,
∴旋转的角度是120°的整数倍,
∴旋转的角度至少是120°.
故选:C.
5.(2019 江苏南京中考)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是(  )

A.①④ B.②③ C.②④ D.③④
【答案】D.
【分析】依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.
【解答】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';
先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';
故选:D.
6.(2019 辽宁大连中考)下列所述图形中,既是轴对称图形又是中心对称图形的是(  )
A.等腰三角形 B.等边三角形 C.菱形 D.平行四边形
【答案】C.
【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;
B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;
C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;
D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.
故选:C.
7.(2019 辽宁大连中考)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为(  )

A.2 B.4 C.3 D.2
【答案】C.
【分析】由矩形的性质得出∠B=∠D=90°,CD=AB=4,AD∥BC,得出∠AFE=∠CEF,由折叠的性质得:∠AEF=∠CEF,AE=CE,∠D'=∠D=90°,AD'=CD=4,∠AFE=∠AEF,得出AF=AE=CE,设AF=AE=CE=x,则BE=8﹣x,在Rt△ABE中,由勾股定理得出方程,解方程得出AF=5,在Rt△AFD'中,由勾股定理即可得出结果.
【解答】解:∵四边形ABCD是矩形,
∴∠B=∠D=90°,CD=AB=4,AD∥BC,
∴∠AFE=∠CEF,
由折叠的性质得:∠AEF=∠CEF,AE=CE,∠D'=∠D=90°,AD'=CD=4,
∴∠AFE=∠AEF,
∴AF=AE=CE,
设AF=AE=CE=x,则BE=8﹣x,
在Rt△ABE中,由勾股定理得:AB2+BE2=AE2,
即42+(8﹣x)2=x2,
解得:x=5,
∴AF=5,
在Rt△AFD'中,由勾股定理得:D'F===3;
故选:C.
8.(2019 天津中考)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是(  )
A. B. C. D.
【答案】A.
【分析】根据轴对称图形的概念求解.
【解答】解:A、是轴对称图形,故本选项正确;
B、不是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项错误.
故选:A.
9.(2019 云南中考)下列图形既是轴对称图形,又是中心对称图形的是(  )
A. B. C. D.
【答案】B.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;
B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;
C、此图形旋转180°后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;
D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.
故选:B.


10.(2019 重庆中考)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为(  )

A. B. C. D.
【答案】B.
【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=1,C'M=DM=,BM=2,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长.
【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,
∵AD=AC′=2,D是AC边上的中点,
∴DC=AD=2,
由翻折知,△BDC≌△BDC',BD垂直平分CC',
∴DC=DC'=2,BC=BC',CM=C'M,
∴AD=AC′=DC'=2,
∴△ADC'为等边三角形,
∴∠ADC'=∠AC'D=∠C'AC=60°,
∵DC=DC',
∴∠DCC'=∠DC'C=×60°=30°,
在Rt△C'DM中,
∠DC'C=30°,DC'=2,
∴DM=1,C'M=DM=,
∴BM=BD﹣DM=3﹣1=2,
在Rt△BMC'中,
BC'===,
∵S△BDC'=BC'?DH=BD?CM,
∴DH=3×,
∴DH=,
故选:B.

填空题
1.(2019 甘肃中考)如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=   .

【答案】1010.
【分析】根据题意分析可得:第1幅图中有1个,第2幅图中有2×2﹣1=3个,第3幅图中有2×3﹣1=5个,…,可以发现,每个图形都比前一个图形多2个,继而即可得出答案.
【解答】解:根据题意分析可得:第1幅图中有1个.
第2幅图中有2×2﹣1=3个.
第3幅图中有2×3﹣1=5个.
第4幅图中有2×4﹣1=7个.
….
可以发现,每个图形都比前一个图形多2个.
故第n幅图中共有(2n﹣1)个.
当图中有2019个菱形时,
2n﹣1=2019,
n=1010,
故答案为:1010.
2.(2019 陕西中考)如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为   .

【答案】2.
【分析】作以BD为对称轴作N的对称点N',连接PN',MN',依据PM﹣PN=PM﹣PN'≤MN',可得当P,M,N'三点共线时,取“=”,再求得==,即可得出PM∥AB∥CD,∠CMN'=90°,再根据△N'CM为等腰直角三角形,即可得到CM=MN'=2.


【解答】解:如图所示,作以BD为对称轴作N的对称点N',连接PN',MN',
根据轴对称性质可知,PN=PN',
∴PM﹣PN=PM﹣PN'≤MN',
当P,M,N'三点共线时,取“=”,
∵正方形边长为8,
∴AC=AB=,
∵O为AC中点,
∴AO=OC=,
∵N为OA中点,
∴ON=,
∴ON'=CN'=,
∴AN'=,
∵BM=6,
∴CM=AB﹣BM=8﹣6=2,
∴==
∴PM∥AB∥CD,∠CMN'=90°,
∵∠N'CM=45°,
∴△N'CM为等腰直角三角形,
∴CM=MN'=2,
即PM﹣PN的最大值为2,
故答案为:2.



3.(2019 上海中考)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是   .

【答案】2.
【分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB==2.
【解答】解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=∠AEF,
∵正方形ABCD中,E是AD的中点,
∴AE=DE=AD=AB,
∴DE=FE,
∴∠EDF=∠EFD,
又∵∠AEF是△DEF的外角,
∴∠AEF=∠EDF+∠EFD,
∴∠EDF=∠AEF,
∴∠AEB=∠EDF,
∴tan∠EDF=tan∠AEB==2.
故答案为:2.

4.(2019 天津中考)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为   .

【答案】.
【分析】由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,先证△ABF≌△DAE,推出AF的长,再利用勾股定理求出BF的长,最后在Rt△ADF中利用面积法可求出AH的长,可进一步求出AG的长,GE的长.
【解答】解:∵四边形ABCD为正方形,
∴AB=AD=12,∠BAD=∠D=90°,
由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,
∴BF⊥AE,AH=GH,
∴∠FAH+∠AFH=90°,
又∵∠FAH+∠BAH=90°,
∴∠AFH=∠BAH,
∴△ABF≌△DAE(AAS),
∴AF=DE=5,
在Rt△ADF中,
BF===13,
S△ABF=AB?AF=BF?AH,
∴12×5=13AH,
∴AH=,
∴AG=2AH=,
∵AE=BF=13,
∴GE=AE﹣AG=13﹣=,
故答案为:.

5.(2019 浙江杭州中考)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于   .

【答案】2(5+3)
【分析】设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的面积为4,△D′PH的面积为1,推出A′E=4D′H,设D′H=a,则A′E=4a,由△A′EP∽△D′PH,推出=,推出=,可得x=2a,再利用三角形的面积公式求出a即可解决问题.
【解答】解:∵四边形ABC是矩形,
∴AB=CD,AD=BC,设AB=CD=x,
由翻折可知:PA′=AB=x,PD′=CD=x,
∵△A′EP的面积为4,△D′PH的面积为1,
∴A′E=4D′H,设D′H=a,则A′E=4a,
∵△A′EP∽△D′PH,
∴=,
∴=,
∴x2=4a2,
∴x=2a或﹣2a(舍弃),
∴PA′=PD′=2a,
∵?a?2a=1,
∴a=1,
∴x=2,
∴AB=CD=2,PE==2,PH==,
∴AD=4+2++1=5+3,
∴矩形ABCD的面积=2(5+3).
故答案为2(5+3)
6.(2019?青海)如图,在直角坐标系中,已知点A(3,2),将△ABO绕点O逆时针方向旋转180°后得到△CDO,则点C的坐标是   .

【答案】(﹣3,﹣2).
【分析】根据中心对称的性质解决问题即可.
【解答】解:由题意A,C关于原点对称,
∵A(3,2),
∴C(﹣3,﹣2),
股本答案为(﹣3,﹣2).
7.(2019?济南)如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于  .

【答案】.
【分析】根据折叠可得ABNM是正方形,CD=CF=5,∠D=∠CFE=90°,ED=EF,可求出三角形FNC的三边为3,4,5,在Rt△MEF中,由勾股定理可以求出三边的长,通过作辅助线,可证△FNC∽△PGF,三边占比为3:4:5,设未知数,通过PG=HN,列方程求出待定系数,进而求出PF的长,然后求PE的长.
【解答】解:过点P作PG⊥FN,PH⊥BN,垂足为G、H,
由折叠得:ABNM是正方形,AB=BN=NM=MA=5,
CD=CF=5,∠D=∠CFE=90°,ED=EF,
∴NC=MD=8﹣5=3,
在Rt△FNC中,FN==4,
∴MF=5﹣4=1,
在Rt△MEF中,设EF=x,则ME=3﹣x,由勾股定理得,
12+(3﹣x)2=x2,
解得:x=,
∵∠CFN+∠PFG=90°,∠PFG+∠FPG=90°,
∴△FNC∽△PGF,
∴FG:PG:PF=NC:FN:FC=3:4:5,
设FG=3m,则PG=4m,PF=5m,
∴GN=PH=BH=4﹣3m,HN=5﹣(4﹣3m)=1+3m=PG=4m,
解得:m=1,
∴PF=5m=5,
∴PE=PF+FE=5+=,
故答案为:.

8.(2019?深圳)如图,在正方形ABCD中,BE=1,将BC沿CE翻折,使B点对应点刚好落在对角线AC上,将AD沿AF翻折,使D点对应点刚好落在对角线AC上,求EF=   .

【答案】.
【分析】作FM⊥AB于点M.根据折叠的性质与等腰直角三角形的性质得出EX=EB=AX=1,∠EXC=∠B=90°,AM=DF=YF=1,由勾股定理得到AE==.那么正方形的边长AB=FM=+1,EM=﹣1,然后利用勾股定理即可求出EF.
【解答】解:如图,作FM⊥AB于点M.
∵四边形ABCD是正方形,
∴∠BAC=∠CAD=45°.
∵将BC沿CE翻折,B点对应点刚好落在对角线AC上的点X,
∴EX=EB=AX=1,∠EXC=∠B=90°,
∴AE==.
∵将AD沿AF翻折,使D点对应点刚好落在对角线AC上的点Y,
∴AM=DF=YF=1,
∴正方形的边长AB=FM=+1,EM=﹣1,
∴EF===.
故答案为.

解答题
1.(2019 辽宁大连中考)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).
(1)填空:t的值为   (用含m的代数式表示)
(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;
(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.
【分析】(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,顶点(1,﹣4a)围绕点P(m,0)旋转180°的对称点为(2m﹣1,4a),即可求解;
(2)分t<1、1≤t、t三种情况,分别求解;
(3)分a>0、a<0两种情况,分别求解.
【解答】解:(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,
顶点(1,﹣4a)围绕点P(m,0)旋转180°的对称点为(2m﹣1,4a),
C2:y=﹣a(x﹣2m+1)2+4a,函数的对称轴为:x=2m﹣1,
t=2m﹣1,
故答案为:2m﹣1;
(2)a=﹣1时,
C1:y=(x﹣1)2﹣4,
①当t<1时,
x=时,有最小值y2=,
x=t时,有最大值y1=﹣(t﹣1)2+4,
则y1﹣y2=﹣(t﹣1)2+4﹣=1,无解;
②1≤t时,
x=1时,有最大值y1=4,
x=时,有最小值y2=﹣(t﹣1)2+4,
y1﹣y2=≠1(舍去);
③当t时,
x=1时,有最大值y1=4,
x=t时,有最小值y2=﹣(t﹣1)2+4,
y1﹣y2=(t﹣1)2=1,
解得:t=0或2(舍去0),
故C2:y=(x﹣2)2﹣4=x2﹣4x;
(3)m=0,
C2:y=﹣a(x+1)2+4a,
点A、B、D、A′、D′的坐标分别为(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0),
当a>0时,a越大,则OD越大,则点D′越靠左,

当C2过点A′时,y=﹣a(0+1)2+4a=1,解得:a=,
当C2过点D′时,同理可得:a=1,
故:0<a或a≥1;
当a<0时,
当C2过点D′时,﹣3a=1,解得:a=﹣,
故:a≤﹣;
综上,故:0<a或a≥1或a≤﹣.
2.(2019山西中考)综合与实践
动手操作:
第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.
第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.
第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME.如图5,图中的虚线为折痕.
问题解决:
(1)在图5中,∠BEC的度数是   ,的值是   .
(2)在图5中,请判断四边形EMGF的形状,并说明理由;
(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:   .

【分析】(1)由折叠的性质得BE=EN,AE=AF,∠CEB=∠CEN,∠BAC=∠CAD,由正方形性质得∠EAF=90°,推出∠AEF=∠AFE=45°,得出∠BEN=135°,∠BEC=67.5°,证得△AEN是等腰直角三角形,得出AE=EN,即可得出结果;
(2)由正方形性质得∠B=∠BCD=∠D=90°,由折叠的性质得∠BCE=∠ECA=∠ACF=∠FCD,CM=CG,∠BEC=∠NEC=∠NFC=∠DFC,得出∠BCE=∠ECA=∠ACF=∠FCD=22.5°,∠BEC=∠NEC=∠NFC=∠DFC=67.5°,由折叠可知MH、GH分别垂直平分EC、FC,得出MC=ME=CG=GF,推出∠MEC=∠BCE=22.5°,∠GFC=∠FCD=22.5°,∠MEF=90°,∠GFE=90°,推出∠CMG=45°,∠BME=45°,得出∠EMG=90°,即可得出结论;
(3)连接EH、FH,由折叠可知MH、GH分别垂直平分EC、FC,同时EC、FC也分别垂直平分MH、GH,则四边形EMCH与四边形FGCH是菱形.
【解答】解:(1)由折叠的性质得:BE=EN,AE=AF,∠CEB=∠CEN,∠BAC=∠CAD,
∵四边形ABCD是正方形,
∴∠EAF=90°,
∴∠AEF=∠AFE=45°,
∴∠BEN=135°,
∴∠BEC=67.5°,
∴∠BAC=∠CAD=45°,
∵∠AEF=45°,
∴△AEN是等腰直角三角形,
∴AE=EN,
∴==;
故答案为:67.5°,;
(2)四边形EMGF是矩形;理由如下:
∵四边形ABCD是正方形,
∴∠B=∠BCD=∠D=90°,
由折叠的性质得:∠BCE=∠ECA=∠ACF=∠FCD,CM=CG,∠BEC=∠NEC=∠NFC=∠DFC,
∴∠BCE=∠ECA=∠ACF=∠FCD==22.5°,∠BEC=∠NEC=∠NFC=∠DFC=67.5°,
由折叠可知:MH、GH分别垂直平分EC、FC,
∴MC=ME=CG=GF,
∴∠MEC=∠BCE=22.5°,∠GFC=∠FCD=22.5°,
∴∠MEF=90°,∠GFE=90°,
∵∠MCG=90°,CM=CG,
∴∠CMG=45°,
∵∠BME=∠BCE+∠MEC=22.5°+22.5°=45°,
∴∠EMG=180°﹣∠CMG﹣∠BME=90°,
∴四边形EMGF是矩形;
(3)连接EH、FH,如图所示:
∵由折叠可知:MH、GH分别垂直平分EC、FC,同时EC、FC也分别垂直平分MH、GH,
∴四边形EMCH与四边形FGCH是菱形,
故答案为:菱形EMCH或菱形FGCH.



3.(2019?济南)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.

(1)求a和k的值;
(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.
①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求的值;
②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三形,求所有满足条件的m的值.
【分析】(1)先将点A坐标代入直线AB的解析式中,求出a,进而求出点B坐标,再将点B坐标代入反比例函数解析式中即可得出结论;
(2)①先确定出点D(5,4),进而求出点E坐标,进而求出DE,EF,即可得出结论;
②先表示出点C,D坐标,再分两种情况:Ⅰ、当BC=CD时,判断出点B在AC的垂直平分线上,即可得出结论;
Ⅱ、当BC=BD时,先表示出BC,用BC=BD建立方程求解即可得出结论.
【解答】解:(1)∵点A(0,8)在直线y=﹣2x+b上,
∴﹣2×0+b=8,
∴b=8,
∴直线AB的解析式为y=﹣2x+8,
将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,
∴a=4,
∴B(2,4),
将B(2,4)在反比例函数解析式y=(x>0)中,得k=xy=2×4=8;
(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y=,
当m=3时,
∴将线段AB向右平移3个单位长度,得到对应线段CD,
∴D(2+3,4),
即:D(5,4),
∵DF⊥x轴于点F,交反比例函数y=的图象于点E,
∴E(5,),
∴DE=4﹣=,EF=,
∴==;
②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,
∴CD=AB,AC=BD=m,
∵A(0,8),B(2,4),
∴C(m,8),D((m+2,4),
∵△BCD是以BC为腰的等腰三形,
∴Ⅰ、当BC=CD时,
∴BC=AB,
∴点B在线段AC的垂直平分线上,
∴m=2×2=4,
Ⅱ、当BC=BD时,
∵B(2,4),C(m,8),
∴BC=,
∴=m,
∴m=5,
即:△BCD是以BC为腰的等腰三形,满足条件的m的值为4或5.



4.(2019?济南)小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.

(一)猜测探究
在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.
(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是   ,NB与MC的数量关系是   ;
(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.
(二)拓展应用
如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=60°,∠B1A1C1=75°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旋转75°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.
【分析】(一)①结论:∠NAB=∠MAC,BN=MC.根据SAS证明△NAB≌△MAC即可.
②①中结论仍然成立.证明方法类似.
(二)如图3中,在A1C1上截取A1N=A1Q,连接PN,作NH⊥B1C1于H,作A1M⊥B1C1于M.理由全等三角形的性质证明B1Q=PN,推出当PN的值最小时,QB1的值最小,求出HN的值即可解决问题.
【解答】解:(一)(1)结论:∠NAB=∠MAC,BN=MC.
理由:如图1中,

∵∠MAN=∠CAB,
∴∠NAB+∠BAM=∠BAM+∠MAC,
∴∠NAB=∠MAC,
∵AB=AC,AN=AM,
∴△NAB≌△MAC(SAS),
∴BN=CM.
故答案为∠NAB=∠MAC,BN=CM.
(2)如图2中,①中结论仍然成立.

理由:∵∠MAN=∠CAB,
∴∠NAB+∠BAM=∠BAM+∠MAC,
∴∠NAB=∠MAC,
∵AB=AC,AN=AM,
∴△NAB≌△MAC(SAS),
∴BN=CM.
(二)如图3中,在A1C1上截取A1N=A1Q,连接PN,作NH⊥B1C1于H,作A1M⊥B1C1于M.

∵∠C1A1B1=∠PA1Q,
∴∠QA1B1=∠PA1N,
∵A1A=A1P,A1B1=AN,
∴△QA1B1≌△PA1N(SAS),
∴B1Q=PN,
∴当PN的值最小时,QB1的值最小,
在Rt△A1B1M中,∵∠A1B1M=60°,A1B1=8,
∴A1M=A1B1?sin60°=4,
∵∠MA1C1=∠B1A1C1﹣∠B1A1M=75°﹣30°=45°,
∴A1C1=4,
∴NC1=A1C1﹣A1N=4﹣8,
在Rt△NHC1,∵∠C1=45°,
∴NH=4﹣4,
根据垂线段最短可知,当点P与H重合时,PN的值最小,
∴QB1的最小值为4﹣4.
5.(2019?沈阳)思维启迪:
(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是   米.
思维探索:
(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.
①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是   ;
②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;

③当α=150°时,若BC=3,DE=l,请直接写出PC2的值.

【分析】(1)由由CD∥AB,可得∠C=∠B,根据∠APB=∠DPC即可证明△ABP≌△DCP,即可得AB=CD,即可解题.
(2)①延长EP交BC于F,易证△FBP≌△EDP(SAS)可得△EFC是等腰直角三角形,即可证明PC=PE,PC⊥PE.
②作BF∥DE,交EP延长线于点F,连接CE、CF,易证△FBP≌△EDP(SAS),结合已知得BF=DE=AE,再证明△FBC≌△EAC(SAS),可得△EFC是等腰直角三角形,即可证明PC=PE,PC⊥PE.
③作BF∥DE,交EP延长线于点F,连接CE、CF,过E点作EH⊥AC交CA延长线于H点,由旋转旋转可知,∠CAE=150°,DE与BC所成夹角的锐角为30°,得∠FBC=∠EAC,同②可证可得PC=PE,PC⊥PE,再由已知解三角形得∴EC2=AH2+HE2=,即可求出PC2=.
【解答】(1)解:∵CD∥AB,∴∠C=∠B,
在△ABP和△DCP中,

∴△ABP≌△DCP(AAS),
∴DC=AB.
∵AB=200米.
∴CD=200米,
故答案为:200.
(2)①PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE.
理由如下:如解图1,延长EP交BC于F,
同(1)理,可知∴△FBP≌△EDP(AAS),
∴PF=PE,BF=DE,
又∵AC=BC,AE=DE,
∴FC=EC,
又∵∠ACB=90°,
∴△EFC是等腰直角三角形,
∵EP=FP,
∴PC=PE,PC⊥PE.
②PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE.
理由如下:如解图2,作BF∥DE,交EP延长线于点F,连接CE、CF,
同①理,可知△FBP≌△EDP(AAS),
∴BF=DE,PE=PF=,
∵DE=AE,
∴BF=AE,
∵当α=90°时,∠EAC=90°,
∴ED∥AC,EA∥BC
∵FB∥AC,∠FBC=90,
∴∠CBF=∠CAE,
在△FBC和△EAC中,

∴△FBC≌△EAC(SAS),
∴CF=CE,∠FCB=∠ECA,
∵∠ACB=90°,
∴∠FCE=90°,
∴△FCE是等腰直角三角形,
∵EP=FP,
∴CP⊥EP,CP=EP=.
③如解图3,作BF∥DE,交EP延长线于点F,连接CE、CF,过E点作EH⊥AC交CA延长线于H点,
当α=150°时,由旋转旋转可知,∠CAE=150°,DE与BC所成夹角的锐角为30°,
∴∠FBC=∠EAC=α=150°
同②可得△FBP≌△EDP(AAS),
同②△FCE是等腰直角三角形,CP⊥EP,CP=EP=,
在Rt△AHE中,∠EAH=30°,AE=DE=1,
∴HE=,AH=,
又∵AC=AB=3,
∴CH=3+,
∴EC2=CH2+HE2=
∴PC2==.



6.(2019?宁夏)将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(,0),与s轴相交于点Q.
(1)试确定三角板ABC的面积;
(2)求平移前AB边所在直线的解析式;
(3)求s关于m的函数关系式,并写出Q点的坐标.

【分析】(1)与m轴相交于点P(,0),可知OB=,OA=1;
(2)设AB的解析式y=kx+b,将点B(0,),A(1,0)代入即可;
(3)在移动过程中OB=﹣m,则OA=tan30°×OB=(﹣m)=1﹣m,所以s=×(﹣m)×(1﹣m)=﹣m+,(0≤m≤);当m=0时,s=,即可求Q(0,).

【解答】解:(1)∵与m轴相交于点P(,0),
∴OB=,
∵∠ABC=30°,
∴OA=1,
∴S==;
(2)∵B(0,),A(1,0),
设AB的解析式y=kx+b,
∴,
∴,
∴y=﹣x+;
(3)在移动过程中OB=﹣m,则OA=tan30°×OB=(﹣m)=1﹣m,
∴s=×(﹣m)×(1﹣m)=﹣m+,(0≤m≤)
当m=0时,s=,
∴Q(0,).
7.(2019?成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,求A'C+B'C的最小值.

【分析】根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,推出四边形A′B′CD是矩形,∠B′A′C=30°,解直角三角形即可得到结论.
【解答】解:∵在边长为1的菱形ABCD中,∠ABC=60°,
∴AB=1,∠ABD=30°,
∵将△ABD沿射线BD的方向平移得到△A'B'D',
∴A′B′=AB=1,∠A′B′D=30°,
根据垂线段最短得到,当B′C⊥A′B′时,A'C+B'C的值最小,
∵AB∥A′B′,AB=A′B′,AB=CD,AB∥CD,
∴A′B′=CD,A′B′∥CD,
∴四边形A′B′CD是矩形,
∠B′A′C=30°,
∴B′C=,A′C=,
∴A'C+B'C的最小值为,

8.(2019?济南)如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.
(1)求抛物线C的函数解析式及顶点G的坐标;
(2)如图2,直线l:y=kx﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;
(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP=∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.

【分析】(1)运用待定系数法将A(﹣4,0)、B(﹣1,3)代入y=ax2+bx中,即可求得a和b的值和抛物线C解析式,再利用配方法将抛物线C解析式化为顶点式即可求得顶点G的坐标;
(2)根据抛物线C绕点O旋转180°,可求得新抛物线C′的解析式,再将A(﹣4,0)代入y=kx﹣中,即可求得直线l解析式,根据对称性可得点E坐标,过点D作DH∥y轴交直线l于H,过E作EK∥y轴交直线l于K,由DE=2EM,即可得=,再证明△MEK∽△MDH,即可得DH=3EK,建立方程求解即可;
(3)连接BG,易证△ABG是Rt△,∠ABG=90°,可得tan∠DEP=tan∠GAB=,在x轴下方过点O作OH⊥OE,在OH上截取OH=OE=,过点E作ET⊥y轴于T,连接EH交抛物线C于点P,点P即为所求的点;通过建立方程组求解即可.
【解答】解:(1)将A(﹣4,0)、B(﹣1,3)代入y=ax2+bx中,得
解得
∴抛物线C解析式为:y=﹣x2﹣4x,
配方,得:y=﹣x2﹣4x=﹣(x+2)2+4,∴顶点为:G(﹣2,4);
(2)∵抛物线C绕点O旋转180°,得到新的抛物线C′.
∴新抛物线C′的顶点为:G′(2,﹣4),二次项系数为:a′=1
∴新抛物线C′的解析式为:y=(x﹣2)2﹣4=x2﹣4x
将A(﹣4,0)代入y=kx﹣中,得0=﹣4k﹣,解得k=,
∴直线l解析式为y=x﹣,
∵D(m,﹣m2﹣4m),
∴直线DO的解析式为y=﹣(m+4)x,
由抛物线C与抛物线C′关于原点对称,可得点D、E关于原点对称,
∴E(﹣m,m2+4m)
如图2,过点D作DH∥y轴交直线l于H,过E作EK∥y轴交直线l于K,
则H(m,m﹣),K(﹣m,m﹣),
∴DH=﹣m2﹣4m﹣(m﹣)=﹣m2m+,EK=m2+4m﹣(m﹣)=m2+m+,
∵DE=2EM
∴=,
∵DH∥y轴,EK∥y轴
∴DH∥EK
∴△MEK∽△MDH
∴==,即DH=3EK
∴﹣m2m+=3(m2+m+)
解得:m1=﹣3,m2=,
∵m<﹣2
∴m的值为:﹣3;
(3)由(2)知:m=﹣3,
∴D(﹣3,3),E(3,﹣3),OE=3,
如图3,连接BG,在△ABG中,∵AB2=(﹣1+4)2+(3﹣0)2=18,BG2=2,AG2=20
∴AB2+BG2=AG2
∴△ABG是Rt△,∠ABG=90°,
∴tan∠GAB===,
∵∠DEP=∠GAB
∴tan∠DEP=tan∠GAB=,
在x轴下方过点O作OH⊥OE,在OH上截取OH=OE=,
过点E作ET⊥y轴于T,连接EH交抛物线C于点P,点P即为所求的点;
∵E(3,﹣3),
∴∠EOT=45°
∵∠EOH=90°
∴∠HOT=45°
∴H(﹣1,﹣1),设直线EH解析式为y=px+q,
则,解得
∴直线EH解析式为y=﹣x,
解方程组,得,,
∴点P的横坐标为:或.









PAGE



HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
页 1



同课章节目录