中小学教育资源及组卷应用平台
【专题讲义】北师大版九年级数学上册
第3讲 正方形综合复习专题精讲(提高版)
温故知新
一、平行四边形的性质与判定
1、平行四边形的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。
2、平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
3、平行四边形的判别方法:
平行四边形中有4条判定定理:简记为一组两组两条
一组(对边平行且相等) 一组对边平行且相等的四边形是平行四边形
两组(对边平行、对边相等) 两组对边分别平行的四边形是平行四边形
两组对边分别相等的四边形是平行四边形
两条(对角线相互平分) 两条对角线互相平分的四边形是平行四边形
◆二、菱形的性质与判定:
1、菱形的定义: 有一组邻边相等的平行四边形叫做菱形,菱形是特殊的平行四边形。
2、菱形的性质:
(1)对边平行,四边相等。(2)对角相等,邻角互补。
(3)对角线互相垂直平分且每一条对角线平分一组对角。
四边形
四边形
3、菱形的判定:
(1)有一组邻边相等的平行四边形是菱形。
(2)对角线互相垂直的平行四边形。
(3)四条边都相等的四边形。
(4)菱形的面积=边长×高=对角线的乘积的一半。
◆三、矩形的性质与判定:
矩形的定义:有一个角是直角的平行四边形是矩形(矩形是特殊的平行四边形)。
※推论:直角三角形斜边上的中线等于斜边的一半。
智慧乐园
知识要点一
正方形的定义及性质
(1)正方形的定义:一组邻边相等并且有一个角是直角的平行四边形。
它包含两层意思:正方形是特殊的矩形,又是特殊的菱形。
(2)正方形的性质:
正方形具有矩形和菱形的一切性质。
边:对边平行,四边相等。
角:四个角是直角。
对角线:互相垂直平分且相等,每一条对角线平分一组对角。
典例分析
例1、下列说法正确的是( )
A.对角线相等且互相垂直的四边形是菱形
B.对角线互相垂直平分的四边形是正方形
C.对角线互相垂直的四边形是平行四边形
D.对角线相等且互相平分的四边形是矩形
例2、已知:如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,面积记作S1;再作第二个正方形A2B2C2A3,面积记作S2;继续作第三个正方形A3B3C3A4,面积记作S3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第6个正方形的面积S6是( )
A.256 B.900 C.1024 D.4096
例3、如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点,若AM=2,则正方形的边长为( )
A.4 B.3 C.2+ D.
例4、如图,正方形AEFG的顶点E,G在正方形ABCD的边AB,AD上,连接BF,DF.则BE:CF的值为 .
例5、如图,正方形ABCD中,以对角线BD为边作菱形BDFE,使B,C,E三点在同一直线上,连接BF,交CD与点G.
(1)求证:CG=CE;
(2)若正方形边长为4,求菱形BDFE的面积.
例6、【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC= 90° .
【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.
(1)求证:ED=FC.
(2)若∠ADE=20°,求∠DMC的度数.
举一反三
1、如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形A2016B2016C2016D2016的边长是( )
A.()2015 B.()2016 C.()2016 D.()2015
2、如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为( )
A.2 B.3 C.4 D.5
3、如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是( )
A.75° B.60° C.54° D.67.5°
4、如图,在平面直角坐标系中,点A的坐标是(0,3),点B的坐标是(﹣4,0),以AB为边作正方形ABCD,连接OD,DB.则△DOB的面积是 .
5、如图,设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去…,记正方形ABCD的边长a1=1,依上述方法所作的正方形的边长依次为a2,a3,a4,…,则an= .
6、如图,四边形ABCD是边长为a的正方形,点G、E分别是边AB、BC的中点,∠AEF=90°,且EF交正方形外角的平方线CF于点F.
(1)证明:△AGE≌△ECF;
(2)求△AEF的面积.
知识要点二
正方形的判定
判定方法
(1)有一组邻边相等的矩形是正方形。
(2)有一个角是直角的菱形是正方形。
(3)对角线互相垂直平分且相等的四边形是正方形。
(4)有一组邻边相等且有一个角是直角的平行四边形是正方形。
典例分析
例1、下列说法不正确的是( )
A.有一个角是直角的平行四边形是正方形
B.对角线相等的菱形是正方形
C.对角线互相垂直的矩形是正方形
D.一组邻边相等的矩形是正方形
例2、如图,在△ABC中,点E,D,F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是( )
A.四边形AEDF是平行四边形
B.如果∠BAC=90°,那么四边形AEDF是矩形
C.如果AD平分∠BAC,那么四边形AEDF是菱形
D.如果AD⊥BC且AB=AC,那么四边形AEDF是正方形
例3、如图,点E在正方形ABCD的对角线AC上,且EC=3AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为 .
例4、已知:如图,在△ABC中,AB=AC,D是的BC边的中点,DE⊥AC,DF⊥AB,垂足
分别是E、F.
(1)求证:DE=DF;
(2)只添加一个条件,使四边形EDFA是正方形,并给出证明.
举一反三
1、菱形,矩形,正方形都具有的性质是( )
A.对角线相等且互相平分 B.对角线相等且互相垂直平分
C.对角线互相平分 D.四条边相等,四个角相等
2、如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是 .
3、如图,过正方形ABCD的顶点D作DE∥AC交BC的延长线于点E.
(1)判断四边形ACED的形状,并说明理由;
(2)若BD=8cm,求线段BE的长.
考场直播
1、如图,正方形ABGD中,AB=AD=6,梯形ABCD中,DE⊥DC交AB于E,DF平分∠EDC交BC于F,连结EF.
(1)证明:EF=CF;
(2)当时,求EF的长.
自我挑战
建议用时:30分钟
1、如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为( )
A.2 B.3 C.4 D.5
2、如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是( )
A.75° B.60° C.54° D.67.5°
3、如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是( )
A. B. C. D.
4、如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(,1),则点C的坐标为( )
A.(﹣,1) B.(﹣1,﹣) C.(﹣1,) D.(1,﹣)
5、如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,以斜边AC为边作正方形ACDE,连接BE,则BE的长是( )
A. B.14 C. D.
6、如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC的长等于 .
7、如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
A
B
C
D
1
2
A
B
C
D
矩形的性质:矩形具有平行四边形的一切性质。
(1)边:对边平行且相等。
(2)角:四个角都是直角。
(3)对角线:互相平分且相等。
矩形的判定:
(1)有一个角是直角的平行四边形。
(2)对角线相等的平行四边形。
(3)有三个角是直角的四边形。
学霸说:
熟练掌正方形的性质,三角形的全等判定及性质,勾股定理的应用,直角三角形斜边上中线的性质等是解题的关键;
套路揭密:
(1)考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法;
(2)几何图形中,仔细分析图形的构成并熟练掌握各种性质是解题的关键。
PAGE
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
页 1
中小学教育资源及组卷应用平台
【专题讲义】北师大版九年级数学上册
第3讲 正方形综合复习专题精讲(解析版)
参考答案
温故知新
一、平行四边形的性质与判定
1、平行四边形的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。
2、平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
3、平行四边形的判别方法:
平行四边形中有4条判定定理:简记为一组两组两条
一组(对边平行且相等) 一组对边平行且相等的四边形是平行四边形
两组(对边平行、对边相等) 两组对边分别平行的四边形是平行四边形
两组对边分别相等的四边形是平行四边形
两条(对角线相互平分) 两条对角线互相平分的四边形是平行四边形
◆二、菱形的性质与判定:
1、菱形的定义: 有一组邻边相等的平行四边形叫做菱形,菱形是特殊的平行四边形。
2、菱形的性质:
(1)对边平行,四边相等。(2)对角相等,邻角互补。
(3)对角线互相垂直平分且每一条对角线平分一组对角。
四边形
四边形
3、菱形的判定:
(1)有一组邻边相等的平行四边形是菱形。
(2)对角线互相垂直的平行四边形。
(3)四条边都相等的四边形。
(4)菱形的面积=边长×高=对角线的乘积的一半。
◆三、矩形的性质与判定:
矩形的定义:有一个角是直角的平行四边形是矩形(矩形是特殊的平行四边形)。
※推论:直角三角形斜边上的中线等于斜边的一半。
智慧乐园
知识要点一
正方形的定义及性质
(1)正方形的定义:一组邻边相等并且有一个角是直角的平行四边形。
它包含两层意思:正方形是特殊的矩形,又是特殊的菱形。
(2)正方形的性质:
正方形具有矩形和菱形的一切性质。
边:对边平行,四边相等。
角:四个角是直角。
对角线:互相垂直平分且相等,每一条对角线平分一组对角。
典例分析
例1、下列说法正确的是( )
A.对角线相等且互相垂直的四边形是菱形
B.对角线互相垂直平分的四边形是正方形
C.对角线互相垂直的四边形是平行四边形
D.对角线相等且互相平分的四边形是矩形
【解答】解:选D.
例2、已知:如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,面积记作S1;再作第二个正方形A2B2C2A3,面积记作S2;继续作第三个正方形A3B3C3A4,面积记作S3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第6个正方形的面积S6是( )
A.256 B.900 C.1024 D.4096
【解答】解:∵∠MON=45°,
∴△OA1B1是等腰直角三角形,
∵OA1=1,
∴正方形A1B1C1A2的边长为1,
∵B1C1∥OA2,
∴∠B2B1C1=∠MON=45°,
∴△B1C1B2是等腰直角三角形,
∴正方形A2B2C2A3的边长为:1+1=2,
同理,第3个正方形A3B3C3A4的边长为:2+2=4,
第4个正方形A4B4C4A5的边长为:4+4=8,
第5个正方形A5B5C5A6的边长为:8+8=16,
第6个正方形A6B6C6A7的边长为:16+16=32,
所以,第6个正方形的面积S6是:322=1024.故选C.
例3、如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点,若AM=2,则正方形的边长为( )
A.4 B.3 C.2+ D.
【解答】解:过点M作MF⊥AC于点F,如图所示.
∵MC平分∠ACB,四边形ABCD为正方形,
∴∠CAB=45°,FM=BM.
在Rt△AFM中,∠AFM=90°,∠FAM=45°,AM=2,
∴FM=AM?sin∠FAM=.
AB=AM+MB=2+.
故选C.
例4、如图,正方形AEFG的顶点E,G在正方形ABCD的边AB,AD上,连接BF,DF.则BE:CF的值为 .
【解答】解:设正方形ABCD的边长为a,正方形AEFG的边长为b,
则BE=a﹣b,
∵正方形AEFG的顶点E,
∴AF平分∠BAD,
∵四边形ABCD是正方形,
∴CA平分∠BAD,
∴点F在正方形ABCD的对角线上,
∵G在正方形ABCD的边AB,AD上,
∴CF=a﹣b,
∴BE:CF=(a﹣b):(a﹣b)=.
故答案为:.
例5、如图,正方形ABCD中,以对角线BD为边作菱形BDFE,使B,C,E三点在同一直线上,连接BF,交CD与点G.
(1)求证:CG=CE;
(2)若正方形边长为4,求菱形BDFE的面积.
【解答】解:连接DE,则DE⊥BF,
∵∠ODG+∠OGD=90°,∠CBG+∠CGB=90°,∠CGB=∠OGD
∴∠CDE=∠CBG,
又∵BC=DC,∠BCG=∠DCE,
∴△BCG≌△DCE(ASA),
∴CG=CE,
(2)正方形边长BC=4,则BD=BC=4,
菱形BDFE的面积为S=4×4=16.
答:菱形BDFE的面积为16.
例6、【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC= 90° .
【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.
(1)求证:ED=FC.
(2)若∠ADE=20°,求∠DMC的度数.
【解答】解:如图①中,∵四边形ABCD是正方形,
∴AD=AB=CD,∠ADC=90°,
∵△ADE≌△DFC,
∴DF=CD=AE=AD,
∵∠FDC=60°+90°=150°,
∴∠DFC=∠DCF=∠ADE=∠AED=15°,
∴∠FDE=60°+15°=75°,
∴∠MFD+∠FDM=90°,
∴∠FMD=90°,
故答案为90°
(1)∵△ABE为等边三角形,
∴∠EAB=60°,EA=AB.
∵△ADF为等边三角形,
∴∠FDA=60°,AD=FD.
∵四边形ABCD为矩形,
∴∠BAD=∠ADC=90°,DC=AB.
∴EA=DC.
∵∠EAD=∠EAB+∠BAD=150°,∠CDF=∠FDA+∠ADC=150°,
∴∠EAD=∠CDF.
在△EAD和△CDF中,
,
∴△EAD≌△CDF.
∴ED=FC;
(2)∵△EAD≌△CDF,
∴∠ADE=∠DFC=20°,
∴∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC=60°+20°+20°=100°.
举一反三
1、如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形A2016B2016C2016D2016的边长是( )
A.()2015 B.()2016 C.()2016 D.()2015
【解答】解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…
∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,
∴D1E1=C1D1sin30°=,则B2C2=()1,
同理可得:B3C3==()2,
故正方形AnBnCnDn的边长是:()n﹣1.
则正方形A2016B2016C2016D2016的边长是:()2015.
故选:D.
2、如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为( )
A.2 B.3 C.4 D.5
【解答】解:将△DAF绕点A顺时针旋转90度到△BAF′位置,
由题意可得出:△DAF≌△BAF′,
∴DF=BF′,∠DAF=∠BAF′,
∴∠EAF′=45°,
在△FAE和△EAF′中,
,
∴△FAE≌△EAF′(SAS),
∴EF=EF′,
∵△ECF的周长为4,
∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,
∴2BC=4,
∴BC=2.
故选A.
3、如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是( )
A.75° B.60° C.54° D.67.5°
【解答】解:如图,连接BD,
∵∠BCE=∠BCD+∠DCE=90°+60°=150°,BC=EC,
∴∠EBC=∠BEC=(180°﹣∠BCE)=15°
∵∠BCM=∠BCD=45°,
∴∠BMC=180°﹣(∠BCM+∠EBC)=120°,
∴∠AMB=180°﹣∠BMC=60°
∵AC是线段BD的垂直平分线,M在AC上,
∴∠AMD=∠AMB=60°
故选B.
4、如图,在平面直角坐标系中,点A的坐标是(0,3),点B的坐标是(﹣4,0),以AB为边作正方形ABCD,连接OD,DB.则△DOB的面积是 14 .
【解答】解:过点D作DE⊥y轴,垂足为E.
∵A的坐标是(0,3),点B的坐标是(﹣4,0),
∴OA=3,OB=4.
∵ABCD为正方形,
∴AB=AD,∠DAB=90°.
∴∠DAE=∠AB0.
在△ABO和△DAE中,
∴△ABO≌△DAE.
∴AE=OB=4.
∴OE=AE+AO=4+3=7.
∴△OBD的面积=OB?OE=×4×7=14.
故答案为:14.
5、如图,设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去…,记正方形ABCD的边长a1=1,依上述方法所作的正方形的边长依次为a2,a3,a4,…,则an= ()n﹣1 .
【解答】解:由题意得,a1=1,
a2=a1=,
a3=a2=()2,
a4=a3=()3,
…,
an=an﹣1=()n﹣1.
故答案为:()n﹣1.
6、如图,四边形ABCD是边长为a的正方形,点G、E分别是边AB、BC的中点,∠AEF=90°,且EF交正方形外角的平方线CF于点F.
(1)证明:△AGE≌△ECF;
(2)求△AEF的面积.
【解答】(1)证明:∵G,E分别是正方形ABCD的边AB,BC的中点,
∴AG=GB=BE=EC,且∠AGE=180°﹣45°=135°;
又∵CF是∠DCH的平分线,
∴∠DCF=∠FCH=45°,
∠ECF=90°+45°=135°;
在△AGE和△ECF中,
;
∴△AGE≌△ECF;
(2)解:由△AGE≌△ECF,得AE=EF;
又∵∠AEF=90°,
∴△AEF是等腰直角三角形;
∵AB=a,E为BC中点,
∴BE=BC=AB=a,
根据勾股定理得:AE==a,
∴S△AEF=a2.
知识要点二
正方形的判定
判定方法
(1)有一组邻边相等的矩形是正方形。
(2)有一个角是直角的菱形是正方形。
(3)对角线互相垂直平分且相等的四边形是正方形。
(4)有一组邻边相等且有一个角是直角的平行四边形是正方形。
典例分析
例1、下列说法不正确的是( )
A.有一个角是直角的平行四边形是正方形
B.对角线相等的菱形是正方形
C.对角线互相垂直的矩形是正方形
D.一组邻边相等的矩形是正方形
【解答】解:选:A.
例2、如图,在△ABC中,点E,D,F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是( )
A.四边形AEDF是平行四边形
B.如果∠BAC=90°,那么四边形AEDF是矩形
C.如果AD平分∠BAC,那么四边形AEDF是菱形
D.如果AD⊥BC且AB=AC,那么四边形AEDF是正方形
【解答】解:选:D.
例3、如图,点E在正方形ABCD的对角线AC上,且EC=3AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为 a2 .
【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,
∵四边形ABCD是正方形,
∴∠BCD=90°,
又∵∠EPM=∠EQN=90°,
∴∠PEQ=90°,
∴∠PEM+∠MEQ=90°,
∵三角形FEG是直角三角形,
∴∠NEF=∠NEQ+∠MEQ=90°,
∴∠PEM=∠NEQ,
∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,
∴EP=EQ,四边形PCQE是正方形,
在△EPM和△EQN中,
,
∴△EPM≌△EQN(ASA)
∴S△EQN=S△EPM,
∴四边形EMCN的面积等于正方形PCQE的面积,
∵正方形ABCD的边长为a,
∴AC=a,
∵EC=3AE,
∴EC=a,
∴EP=PC=a,
∴正方形PCQE的面积=a×a=a2,
∴四边形EMCN的面积=a2,
例4、已知:如图,在△ABC中,AB=AC,D是的BC边的中点,DE⊥AC,DF⊥AB,垂足
分别是E、F.
(1)求证:DE=DF;
(2)只添加一个条件,使四边形EDFA是正方形,并给出证明.
【解答】解:(1)连接AD,
∵AB=AC,D是的BC边的中点,
∴AD是∠BAC的角平分线,
∵DE⊥AC,DF⊥AB,
∴DF=DE;
(2)添加∠BAC=90°,
∵DE⊥AC,DF⊥AB,
∴∠AFD=∠AED=90°,
∴四边形AFDE是矩形,
∵DF=DE,
∴四边形EDFA是正方形.
举一反三
1、菱形,矩形,正方形都具有的性质是( )
A.对角线相等且互相平分 B.对角线相等且互相垂直平分
C.对角线互相平分 D.四条边相等,四个角相等
【解答】解:A、不正确,菱形的对角线不相等;
B、不正确,菱形的对角线不相等,矩形的对角线不垂直;
C、正确,三者均具有此性质;
D、不正确,矩形的四边不相等,菱形的四个角不相等;
故选C.
2、如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是 16 .
【解答】解:∵四边形ABCD为正方形,
∴∠D=∠ABC=90°,AD=AB,
∴∠ABE=∠D=90°,
∵∠EAF=90°,
∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,
∴∠DAF=∠BAE,
在△AEB和△AFD中,
∵,
∴△AEB≌△AFD(ASA),
∴S△AEB=S△AFD,
∴它们都加上四边形ABCF的面积,
可得到四边形AECF的面积=正方形的面积=16.
故答案为:16.
3、如图,过正方形ABCD的顶点D作DE∥AC交BC的延长线于点E.
(1)判断四边形ACED的形状,并说明理由;
(2)若BD=8cm,求线段BE的长.
【解答】解:(1)四边形ACED是平行四边形.
理由如下:∵四边形ABCD是正方形,
∴AD∥BC,
即AD∥CE,
∵DE∥AC,
∴四边形ACED是平行四边形;
(2)由(1)知,BC=AD=CE=CD,
∵BD=8cm,
∴BC=BD=×8=4cm,
∴BE=BC+CE=4+4=8cm.
考场直播
1、如图,正方形ABGD中,AB=AD=6,梯形ABCD中,DE⊥DC交AB于E,DF平分∠EDC交BC于F,连结EF.
(1)证明:EF=CF;
(2)当时,求EF的长.
【解答】证明:(1)∵正方形ABGD,
又∵DE⊥DC,
∴∠ADE+∠EDG=90°=∠GDC+∠EDG,
∴∠ADE=∠GDC.
又∵∠A=∠DGC,
且AD=GD,
在△ADE与△GDC中,
,
∴△ADE≌△GDC(ASA).
∴DE=DC,且AE=GC.
在△EDF和△CDF中,
,
∴△EDF≌△CDF(SAS).
∴EF=CF.
(2)∵,
∴AE=GC=2.
设EF=x,则BF=8﹣CF=8﹣x,BE=6﹣2=4.
由勾股定理,得x2=(8﹣x)2+42.
解之,得x=5,
即EF=5.
自我挑战
建议用时:30分钟
1、如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为( )
A.2 B.3 C.4 D.5
【解答】解:将△DAF绕点A顺时针旋转90度到△BAF′位置,
由题意可得出:△DAF≌△BAF′,
∴DF=BF′,∠DAF=∠BAF′,
∴∠EAF′=45°,
在△FAE和△EAF′中,
,
∴△FAE≌△EAF′(SAS),
∴EF=EF′,
∵△ECF的周长为4,
∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,
∴2BC=4,
∴BC=2.
故选A.
2、如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是( )
A.75° B.60° C.54° D.67.5°
【解答】解:如图,连接BD,
∵∠BCE=∠BCD+∠DCE=90°+60°=150°,BC=EC,
∴∠EBC=∠BEC=(180°﹣∠BCE)=15°
∵∠BCM=∠BCD=45°,
∴∠BMC=180°﹣(∠BCM+∠EBC)=120°,
∴∠AMB=180°﹣∠BMC=60°
∵AC是线段BD的垂直平分线,M在AC上,
∴∠AMD=∠AMB=60°
故选B.
3、如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是( )
A. B. C. D.
【解答】解:连接BP,过C作CM⊥BD,
∵S△BCE=S△BPE+S△BPC
=BC×PQ×+BE×PR×
=BC×(PQ+PR)×
=BE×CM×,
BC=BE,
∴PQ+PR=CM,
∵BE=BC=1,且正方形对角线BD=BC=,
又∵BC=CD,CM⊥BD,
∴M为BD中点,又△BDC为直角三角形,
∴CM=BD=,
即PQ+PR值是.
故选:D.
4、如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(,1),则点C的坐标为( )
A.(﹣,1) B.(﹣1,﹣) C.(﹣1,) D.(1,﹣)
【解答】解:作AE⊥x轴于E,CF⊥x轴于F,如图所示:
则∠CFO=∠OEA=90°,
∴∠1+∠3=90°,
∵四边形OABC是正方形,
∴OC=OA,∠AOC=90°,
∴∠1+∠2=90°,
∴∠3=∠2,
在△OCF和△AOE中,,
∴△OCF≌△AOE(AAS),
∴OF=AE=1,CF=OE=,
∴点C的坐标为(﹣1,);
故选:C.
5、如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,以斜边AC为边作正方形ACDE,连接BE,则BE的长是( )
A. B.14 C. D.
【解答】解:如图作BM⊥AC于M,延长BM交BD于N.
∵四边形ABCD是正方形,
∴∠AEN=∠EAM=∠AMN=90°,'
∴四边形AENM是矩形,
∴AE=NM,AM=EN,
在RT△ABC中,∵∠ABC=90°,AB=6,BC=8,
∴AC===10,
∵AB?CB=?AC?BM,
∴BM=,AM==,
在RT△BEN中,∵∠BNE=90°,EN=AM=,BN=BM+AE=,
∴BE===2.
故选A.
6、如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC的长等于 16 .
【解答】解:如图,过O点作OG垂直AC,G点是垂足.
∵∠BAC=∠BOC=90°,
∴ABCO四点共圆,
∴∠OAG=∠OBC=45°
∴△AGO是等腰直角三角形,
∴2AG2=2GO2=AO2==72,
∴OG=AG=6,
∵∠BAH=∠0GH=90°,∠AHB=∠OHG,
∴△ABH∽△GOH,
∴=,
∵AB=4,OG=AG=6,
∴AH=2.4,
在直角△OHC中,∵HG=AG﹣AH=6﹣2.4=3.6,OG又是斜边HC上的高,
∴OG2=HG×GC,
而OG=6,GH=3.6,
∴GC=10.
∴AC=AG+GC=6+10=16.
故AC边的长是16.故答案为:16.
7、如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
【解答】(1)证明:在正方形ABCD中,
∵,
∴△CBE≌△CDF(SAS).
∴CE=CF.
(2)解:GE=BE+GD成立.
理由是:∵由(1)得:△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°.
A
B
C
D
1
2
A
B
C
D
矩形的性质:矩形具有平行四边形的一切性质。
(1)边:对边平行且相等。
(2)角:四个角都是直角。
(3)对角线:互相平分且相等。
矩形的判定:
(1)有一个角是直角的平行四边形。
(2)对角线相等的平行四边形。
(3)有三个角是直角的四边形。
学霸说:
熟练掌正方形的性质,三角形的全等判定及性质,勾股定理的应用,直角三角形斜边上中线的性质等是解题的关键;
套路揭密:
(1)考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法;
(2)几何图形中,仔细分析图形的构成并熟练掌握各种性质是解题的关键。
PAGE
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
页 1