中小学教育资源及组卷应用平台
【专题讲义】北师大版九年级数学下册
第2讲 三角函数的应用综合复习专题精讲(培优版)
授课主题 第02讲-----三角函数的应用
授课类型 T同步课堂 P实战演练 S归纳总结
教学目标 在实际问题中熟练建立解三角形模型; 利用三角函数计算模型中的相关长度; 在常见问题中,能熟练做出辅助线构建模型。
授课日期及时段
T(Textbook-Based)——同步课堂
知识梳理知识概念1、相关概念仰角:视线在水平线上方的角叫仰角.俯角:视线在水平线下方的角叫俯角.坡度:坡面的铅直高度和水平宽度的比叫做坡度(或叫坡比), 用字母i表示.坡角:坡面与水平面的夹角叫坡角,用α表示,则有i=_tan α如图所示, ,即坡度是坡角的正切值.方向角:平面上,通过观察点O作一条水平线(向右为东向)和一条铅垂线 (向上为北向),则从O点出发的视线与水平线或铅锤线所夹的角,叫做观测的方向角. 2、利用(三角函数)解直角三角形解实际应用题的一般步骤:① 弄清题中名词术语的意义(如俯角、仰角、坡角、方向角等),然后根据题意画出几何图形,建立数学模型; ② 将实际问题中的数量关系归结为直角三角形中元素之间的关系,当有些图形不是直角三角形时,可添加适当的辅助线,把它们分割成直角三角形; ③ 寻求基础直角三角形,并解这个三角形或设未知数进行求解. 考点一:解决坡度、坡角实际问题例1、河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为( ) A.12米 B.4米 C.5米 D.6米例2、某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( ) A.8.1米 B.17.2米 C.19.7米 D.25.5米 考点二: 方位角问题例1、如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为( ) A.40海里 B.40海里 C.80海里 D.40海里例2、如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进40海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD是( ) A.20海里 B.40海里 C.20海里 D.40海里 考点三:测量高度例1、如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120m,则这栋楼的高度为( ) A.160m B.120m C.300m D.160m例2、如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号式) 考点四:测量距离和宽度例1、如图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m的高空C处时,测得A处渔政船的俯角为45°,测得B处发生险情渔船的俯角为30°,此时渔政船和渔船的距离AB是( ) A.3000m B.3000()m C.3000()m D.1500m例2、如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已AB=80m,DE=10m,求障碍物B,C两点间的距离 (结果精确到0.1m)(参考数据:≈1.414,≈1.732)
P(Practice-Oriented)——实战演练
课堂狙击1、如图,水库大坝截面的迎水坡AD的坡比为4:3,背水坡BC的坡比为1:2,大坝高DE=20m,坝顶宽CD=10m,则下底AB的长为( ) A.55m B.60m C.65m D.70m 2、如图,某水渠的横断面是梯形,已知其斜坡AD的坡度为1:1.2,斜坡BC的坡度为1:0.8,现测得放水前的水面宽EF为3.8米,当水闸放水后,水渠内水面宽GH为6米.则放水后水面上升的高度是( )米. A.1.2 B.1.1 C.0.8 D.2.2 3、如图,已知灯塔M方圆一定范围内有镭射辅助信号,一艘轮船在海上从南向北方向以一定的速度匀速航行,轮船在A处测得灯塔M在北偏东30°方向,行驶1小时后到达B处,此时刚好进入灯塔M的镭射信号区,测得灯塔M在北偏东45°方向,则轮船通过灯塔M的镭射信号区的时间为( ) A.(﹣1)小时 B.(+1)小时 C.2小时 D.小时 4、如图,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为( ) A.cm2 B.cm2 C.cm2 D.cm2 5、如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是( ) A.200米 B.200米 C.220米 D.100()米 6、海中有一个小岛A,它的周围a海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东75°方向上,航行12海里到达D点,这是测得小岛A在北偏东60°方向上.若渔船不改变航线继续向东航行而没有触礁危险,则a的最大值为( ) A.5 B.6 C.6 D.8 7、如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2. (1)求加固后坝底增加的宽度AF的长; (2)求完成这项工程需要土石多少立方米? 8、一条船在海面上自西向东沿直线航行,在A处测得航标C在北偏东60°方向上,前进100米到达B处,又测得航标C在北偏东45°方向上. (1)请根据以上描述,画出图形. (2)已知以航标C为圆心,120米为半径的圆形区域内有浅滩,若这条船继续前进,是否有被浅滩阻碍的危险?为什么? 课后反击1、如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为18°,若楔子沿水平方向前移6cm(如箭头所示),则木桩上升了( ) A.6tan18°cm B.cm C.6sin18°cm D.6cos18°cm 2、如图,某课外活动小组在测量旗杆高度的活动中,已测得仰角 ∠CAE=33°,AB=a,BD=b,则下列求旗杆CD长的正确式子是( ) A.CD=b sin33°+a B.CD=b cos33°+a C.CD=b tan33°+a D.CD= 3、小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为( ) A.()米 B.12米 C.()米 D.10米 4、如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)( ) A.22.48 B.41.68 C.43.16 D.55.63 5、如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km、从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为( ) A.4km B.(2+)km C.2km D.(4﹣)km 6、如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为60°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为45°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度为 (即tan∠PCD=). (1)求该建筑物的高度(即AB的长). 求此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式) 1、如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为( ) A.50 B.51 C.50+1 D.101 2、小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高( ) A.600﹣250米 B.600﹣250米 C.350+350米 D.500米 3、如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是( ) A. B. C. D. 4、在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度为 米.(结果保留根号)
S(Summary-Embedded)——归纳总结
理解坡度的概念,利用坡度解决实际问题 熟练掌握相关方位角、观察角的概念,准确构造直角三角形 利用三角函数、解三角形知识解决测高、距离和宽度等实际问题1、将实际问题中,当有些图形不是直角三角形时,可添加适当的辅助线,把它们分割成直角三角形; 2、寻求基础直角三角形,并解这个三角形或设未知数进行求解是解决问题的关键.本节课我学到 我需要努力的地方是
体系搭建
实战演练
直击中考
重点回顾
名师点拨
学霸经验
PAGE
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
页 1
中小学教育资源及组卷应用平台
【专题讲义】北师大版九年级数学下册
第2讲 三角函数的应用综合复习专题精讲(解析版)
参考答案
授课主题 第02讲——三角函数的应用
授课类型 T同步课堂 P实战演练 S归纳总结
教学目标 在实际问题中熟练建立解三角形模型; 利用三角函数计算模型中的相关长度; 在常见问题中,能熟练做出辅助线构建模型。
授课日期及时段
T(Textbook-Based)——同步课堂
知识梳理知识概念1、相关概念仰角:视线在水平线上方的角叫仰角.俯角:视线在水平线下方的角叫俯角.坡度:坡面的铅直高度和水平宽度的比叫做坡度(或叫坡比), 用字母i表示.坡角:坡面与水平面的夹角叫坡角,用α表示,则有i=_tan α如图所示, ,即坡度是坡角的正切值.方向角:平面上,通过观察点O作一条水平线(向右为东向)和一条铅垂线 (向上为北向),则从O点出发的视线与水平线或铅锤线所夹的角,叫做观测的方向角. 2、利用(三角函数)解直角三角形解实际应用题的一般步骤:① 弄清题中名词术语的意义(如俯角、仰角、坡角、方向角等),然后根据题意画出几何图形,建立数学模型; ② 将实际问题中的数量关系归结为直角三角形中元素之间的关系,当有些图形不是直角三角形时,可添加适当的辅助线,把它们分割成直角三角形; ③ 寻求基础直角三角形,并解这个三角形或设未知数进行求解. 考点一:解决坡度、坡角实际问题例1、河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为( ) A.12米 B.4米 C.5米 D.6米 【解析】A.例2、某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( ) A.8.1米 B.17.2米 C.19.7米 D.25.5米 【解析】作BF⊥AE于F,如图所示:则FE=BD=6米,DE=BF, ∵斜面AB的坡度i=1:2.4,∴AF=2.4BF, 设BF=x米,则AF=2.4x米, 在Rt△ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5, ∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米, 在Rt△ACE中,CE=AE?tan36°=18×0.73=13.14米, ∴CD=CE﹣DE=13.14米﹣5米≈8.1米; 故选:A. 考点二: 方位角问题例1、如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为( ) A.40海里 B.40海里 C.80海里 D.40海里 【解析】过点P作PC⊥AB于点C,由题意可得出:∠A=30°,∠B=45°,AP=80海里, 故CP=AP=40(海里),则PB==40(海里). 例2、如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进40海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD是( ) A.20海里 B.40海里 C.20海里 D.40海里 【解析】根据题意可知∠CAD=30°,∠CBD=60°, ∵∠CBD=∠CAD+∠ACB,∴∠CAD=30°=∠ACB,∴AB=BC=40海里, 在Rt△CBD中,∠BDC=90°,∠DBC=60°, sin∠DBC=,∴sin60°=, ∴CD=40×sin60°=40×=20(海里).故选:C. 考点三:测量高度例1、如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120m,则这栋楼的高度为( ) A.160m B.120m C.300m D.160m 【解析】过点A作AD⊥BC于点D,BC=BD+CD=160(m). 故选A.例2、如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号式) 【解析】作PE⊥OB于点E, PF⊥CO于点F, 在Rt△AOC中,AO=100,∠CAO=60°, ∴CO=AO?tan60°=100(米). 设PE=x米, ∵tan∠PAB==,∴AE=2x. 在Rt△PCF中,∠CPF=45°,CF=100﹣x,PF=OA+AE=100+2x, ∵PF=CF,∴100+2x=100﹣x, 解得x=(米). 答:电视塔OC高为100米,点P的铅直高度为(米). 考点四:测量距离和宽度例1、如图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m的高空C处时,测得A处渔政船的俯角为45°,测得B处发生险情渔船的俯角为30°,此时渔政船和渔船的距离AB是( ) A.3000m B.3000()m C.3000()m D.1500m 【解析】如图,由题意可知CE∥BD, ∴∠CBA=30°,∠CAD=45°,且CD=3000m, 在Rt△ACD中,AD=CD=3000m, 在Rt△BCD中,BD===3000m, ∴AB=BD﹣AD=3000﹣3000=3000(﹣1)(m), 故选C. 例2、如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已AB=80m,DE=10m,求障碍物B,C两点间的距离 (结果精确到0.1m)(参考数据:≈1.414,≈1.732) 【解析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H. 则DE=BF=CH=10m, 在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m. 在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m), ∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m). 答:障碍物B,C两点间的距离约为52.7m.
P(Practice-Oriented)——实战演练
课堂狙击1、如图,水库大坝截面的迎水坡AD的坡比为4:3,背水坡BC的坡比为1:2,大坝高DE=20m,坝顶宽CD=10m,则下底AB的长为( ) A.55m B.60m C.65m D.70m 【解析】C. 2、如图,某水渠的横断面是梯形,已知其斜坡AD的坡度为1:1.2,斜坡BC的坡度为1:0.8,现测得放水前的水面宽EF为3.8米,当水闸放水后,水渠内水面宽GH为6米.则放水后水面上升的高度是( )米. A.1.2 B.1.1 C.0.8 D.2.2【解析】过点E作EM⊥GH于点M,过点F作FN⊥GH于点N,可得四边形EFNM为矩形, 则MN=EF,设ME=FN=x,在Rt△GME中, ∵斜坡AD的坡度为1:1.2,∴ME:GM=1:1.2,∴GM=1.2x, 在Rt△NHF中,∵斜坡BC的坡度为1:0.8,∴NF:NH=1:0.8,∴NH=0.8x, 则GH=1.2x+0.8x+3.8=6,解得:x=1.1. 故选B. 3、如图,已知灯塔M方圆一定范围内有镭射辅助信号,一艘轮船在海上从南向北方向以一定的速度匀速航行,轮船在A处测得灯塔M在北偏东30°方向,行驶1小时后到达B处,此时刚好进入灯塔M的镭射信号区,测得灯塔M在北偏东45°方向,则轮船通过灯塔M的镭射信号区的时间为( ) A.(﹣1)小时 B.(+1)小时 C.2小时 D.小时 【解析】连接MC,过M点作MD⊥AC于D.在Rt△ADM中,∵∠MAD=30°,∴AD=MD, 在Rt△BDM中,∵∠MBD=45°, ∴BD=MD,∴BC=2MD, ∴BC:AB=2MD:(﹣1)MD=2:+1. 故轮船通过灯塔M的镭射信号区的时间为(+1)小时. 故选B. 4、如图,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为( ) A.cm2 B.cm2 C.cm2 D.cm2【解析】如图,由题可知△ABC是一个顶角为45°的等腰三角形, 即∠A=45°,AC=AB. 作CD⊥AB,垂足为D,则CD=1. ∵sin∠A=,∴==AB, ∴S△ABC=×AB×CD=, ∴折叠后重叠部分的面积为cm2. 故选D. 5、如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是( ) A.200米 B.200米 C.220米 D.100()米【解析】由已知,得∠A=30°,∠B=45°,CD=100, ∵CD⊥AB于点D.∴在Rt△ACD中,∠CDA=90°,tanA=, ∴AD===100 在Rt△BCD中,∠CDB=90°,∠B=45°∴DB=CD=100米, ∴AB=AD+DB=100+100=100(+1)米. 故选D. 6、海中有一个小岛A,它的周围a海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东75°方向上,航行12海里到达D点,这是测得小岛A在北偏东60°方向上.若渔船不改变航线继续向东航行而没有触礁危险,则a的最大值为( ) A.5 B.6 C.6 D.8【解析】作AC⊥BD于点C.∠ABD=90°﹣75°=15°, ∵∠ADC=90°﹣60°=30°,∴∠BAD=∠ADC﹣∠ABD=30°﹣15°=15°, ∴∠ABD=∠BAD, ∴BD=AD=12(海里),在直角△ADC中,AC=AD=×12=6(海里).故a的最大值是6海里. 7、如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2. (1)求加固后坝底增加的宽度AF的长; (2)求完成这项工程需要土石多少立方米?【解析】(1)分别过点E、D作EG⊥AB、DH⊥AB交AB于G、H, ∵四边形ABCD是梯形,且AB∥CD, ∴DH平行且等于EG, 故四边形EGHD是矩形,∴ED=GH, 在Rt△ADH中,AH=DH÷tan∠DAH=8÷tan45°=8(米),在Rt△FGE中,i=1:2=, ∴FG=2EG=16(米), ∴AF=FG+GH﹣AH=16+2﹣8=10(米); (2)加宽部分的体积V=S梯形AFED×坝长=×(2+10)×8×400=19200(立方米). 答:(1)加固后坝底增加的宽度AF为10米;(2)完成这项工程需要土石19200立方米. 8、一条船在海面上自西向东沿直线航行,在A处测得航标C在北偏东60°方向上,前进100米到达B处,又测得航标C在北偏东45°方向上. (1)请根据以上描述,画出图形. (2)已知以航标C为圆心,120米为半径的圆形区域内有浅滩,若这条船继续前进,是否有被浅滩阻碍的危险?为什么?【解析】(1)如图所示(2)作CD⊥直线AB于点D, 由已知可得∠CAD=30°,∠CBD=45°,AB=100米. 设CD=x米.在Rt△ACD中,tan∠CAD=, ∴AD=, 在Rt△CBD中,∵∠CBD=45°,∴BD=CD=x, ∵AD﹣BD=AB,∴,解得, ∴这条船继续前进没有被浅滩阻碍的危险. 答:这条船继续前进,没有被浅滩阻碍的危险. 课后反击1、如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为18°,若楔子沿水平方向前移6cm(如箭头所示),则木桩上升了( ) A.6tan18°cm B.cm C.6sin18°cm D.6cos18°cm【解析】A. 2、如图,某课外活动小组在测量旗杆高度的活动中,已测得仰角 ∠CAE=33°,AB=a,BD=b,则下列求旗杆CD长的正确式子是( ) A.CD=b sin33°+a B.CD=b cos33°+a C.CD=b tan33°+a D.CD=【解析】C.3、小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为( ) A.()米 B.12米 C.()米 D.10米【解析】延长AC交BF延长线于D点,则∠CEF=30°,作CF⊥BD于F, 在Rt△CEF中,∠CEF=30°,CE=4m,∴CF=2(米),EF=4cos30°=2(米), 在Rt△CFD中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米, 即CF=2(米),CF:DF=1:2,∴DF=4(米), ∴BD=BE+EF+FD=8+2+4=12+2(米) 在Rt△ABD中,AB=BD=(12+2)=(+6)米. 故选A. 4、如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)( ) A.22.48 B.41.68 C.43.16 D.55.63 【解析】如图,过点P作PA⊥MN于点A,MN=30×2=60(海里), ∵∠MNC=90°,∠CPN=46°,∴∠MNP=∠MNC+∠CPN=136°, ∵∠BMP=68°,∴∠PMN=90°﹣∠BMP=22°, ∴∠MPN=180°﹣∠PMN﹣∠PNM=22°,∴∠PMN=∠MPN, ∴MN=PN=60(海里), ∵∠CNP=46°,∴∠PNA=44°, ∴PA=PN?sin∠PNA=60×0.6947≈41.68(海里).故选:B. 5、如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km、从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为( ) A.4km B.(2+)km C.2km D.(4﹣)km【解析】在CD上取一点E,使BD=DE,设BD=DE=x. ∵BD=DE,∴∠EBD=45°,由题意可得∠CAD=45°,∴AD=DC, ∵从B测得船C在北偏东22.5°的方向, ∴∠BCE=∠CBE=22.5°,∴BE=EC, ∵AB=2km,∴EC=BE=2km, ∵BD=DE=x,∴CE=BE=x,∴2+x=x+x,解得x=. ∴DC=(2+)km. 故选:B. 6、如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为60°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为45°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度为 (即tan∠PCD=). (1)求该建筑物的高度(即AB的长). (2)求此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)【解析】(1)过点P作PE⊥BD于E,PF⊥AB于F, 又∵AB⊥BC于B,∴四边形BEPF是矩形, ∴PE=BF,PF=BE ∵在Rt△ABC中,BC=90米,∠ACB=60°,∴AB=BC?tan60°=90(米), 故建筑物的高度为90米; (2)设PE=x米,则BF=PE=x米, ∵在Rt△PCE中,tan∠PCD==,∴CE=2x, ∵在Rt△PAF中,∠APF=45°, ∴AF=AB﹣BF=90﹣x,PF=BE=BC+CE=90+2x, 又∵AF=PF,∴90﹣x=90+2x,解得:x=30﹣30, 答:人所在的位置点P的铅直高度为()米.1、如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为( ) A.50 B.51 C.50+1 D.101 【解析】设AG=x,在Rt△AEG中,∵tan∠AEG=,∴EG==x, 在Rt△ACG中,∵tan∠ACG=,∴CG==x, ∴x﹣x=100,解得:x=50. 则AB=50+1(米). 故选C. 2、小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高( ) A.600﹣250米 B.600﹣250米 C.350+350米 D.500米 【解析】∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13, ∵AB=1300米,∴AE=1200米,BE=500米, 设EC=x米, ∵∠DBF=60°,∴DF=x米. 又∵∠DAC=30°,∴AC=CD. 即:1200+x=(500+x),解得x=600﹣250. ∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米). 答:山高CD为(600﹣250)米. 故选:B. 3、如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是( ) A. B. C. D. 【解析】如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E, 设l1,l2,l3间的距离为1, ∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°, ∴∠CAD=∠BCE, 在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,, ∴△ACD≌△CBE(AAS), ∴CD=BE=1, 在Rt△ACD中,AC===, 在等腰直角△ABC中,AB=AC=×=, ∴sinα==.故选:D. 4、在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度为 (30+10) 米.(结果保留根号) 【解析】如图作BH⊥EF,CK⊥MN,垂足分别为H、K, 则四边形BHCK是矩形,设CK=HB=x, ∵∠CKA=90°,∠CAK=45°,∴∠CAK=∠ACK=45°, ∴AK=CK=x,BK=HC=AK﹣AB=x﹣30, ∴HD=x﹣30+10=x﹣20, 在RT△BHD中,∵∠BHD=30°,∠HBD=30°, ∴tan30°=,∴=, 解得x=30+10.∴河的宽度为(30+10)米.
S(Summary-Embedded)——归纳总结
理解坡度的概念,利用坡度解决实际问题 熟练掌握相关方位角、观察角的概念,准确构造直角三角形 利用三角函数、解三角形知识解决测高、距离和宽度等实际问题1、将实际问题中,当有些图形不是直角三角形时,可添加适当的辅助线,把它们分割成直角三角形; 2、寻求基础直角三角形,并解这个三角形或设未知数进行求解是解决问题的关键.本节课我学到 我需要努力的地方是
体系搭建
实战演练
直击中考
重点回顾
名师点拨
学霸经验
PAGE
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
页 1