17.1 勾股定理
第2课时 勾股定理的应用
1.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)( )
A.12 m B.13 m C.16 m D.17 m
2.如图,一根垂直于地面的旗杆在离地面5 m处折断,旗杆顶部落在离旗杆底部12 m处,旗杆折断之前的高度是( )
A.5 m B.12 m C.13 m D.18 m
3.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )
A.0.7米 B.1.5米 C.2.2米 D.2.4米
4.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )
A.4米 B.8米 C.9米 D.7米
5.如图,池塘边有两点A,B,点C是与BA方向成直角的AC方向上点,测得BC=60m,AC=20m,则A,B两点问的距离 m.
6.已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3 km,则A,B两地的距离是5km;若A地在C地的正东方向,则B地在C地的 方向.
7.木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,这个桌面 (填”合格”或”不合格”).
8.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为 .
9.如图,长方形的花圃中,有人避开拐角线A→B→C而直接走“捷径”AC,小明想在A处树立一个标牌“少走 米,踏之何忍”,请根据图中数字计算完成标牌中未填的数字.
10.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行 米.
11.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到点D,则橡皮筋被拉长了 cm.
12.将一根24 cm的筷子,置于底面直径为15 cm,高8 cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是 .
13.八(2)班小明和小亮同学学习了“勾股定理”之后,为了测得如图风筝的高度CE,他们进行了如下操作:
①测得BD的长度为15米;(注:BD⊥CE)
②根据手中剩余线的长度计算出风筝线BC的长为25米;
③牵线放风筝的小明身高1.6米.
求风筝的高度CE.
14.小强想知道广场上旗杆的高度,他发现旗杆顶端的绳子垂到旗台上还多0.8米,当他把绳子的下端在旗台上拉开2米后,发现下端刚好接触旗台面,你能帮他算出来这根旗杆的高吗?
15.如图,甲船以16海里/时的速度离开码头向东北方向航行,乙船同时由码头向西北方向航行,已知两船离开码头1.5 h后相距30海里,问乙船每小时航行多少海里?
16.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这跟芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?
17.如图,在一棵树(AD)的10 m高处(B)有两只猴子,其中一只爬下树走向离树20 m(C)的池塘,而另一只则爬到树顶(D)后直扑池塘,如果两只猴子经过的路程相等,那么这棵树有多高?
18.如图,在Rt△ABC中,∠C=90°,AB=5 cm,AC=3 cm,动点P从点B出发沿射线BC以1 cm/s的速度移动,设运动的时间为t s.
(1)求BC边的长;
(2)当△ABP为直角三角形时,求t的值.
参考答案
1.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)
A.12 m B.13 m C.16 m D.17 m
2.如图,一根垂直于地面的旗杆在离地面5 m处折断,旗杆顶部落在离旗杆底部12 m处,旗杆折断之前的高度是(D)
A.5 m B.12 m C.13 m D.18 m
3.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(C)
A.0.7米 B.1.5米 C.2.2米 D.2.4米
4.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为(D)
A.4米 B.8米 C.9米 D.7米
5.如图,池塘边有两点A,B,点C是与BA方向成直角的AC方向上点,测得BC=60m,AC=20m,则A,B两点问的距离 40 m.
6.已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3 km,则A,B两地的距离是5km;若A地在C地的正东方向,则B地在C地的正北方向.
7.木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,这个桌面合格 (填”合格”或”不合格”).
8.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.
9.如图,长方形的花圃中,有人避开拐角线A→B→C而直接走“捷径”AC,小明想在A处树立一个标牌“少走 4 米,踏之何忍”,请根据图中数字计算完成标牌中未填的数字.
10.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行10米.
11.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到点D,则橡皮筋被拉长了2cm.
12.将一根24 cm的筷子,置于底面直径为15 cm,高8 cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是7≤h≤16.
13.八(2)班小明和小亮同学学习了“勾股定理”之后,为了测得如图风筝的高度CE,他们进行了如下操作:
①测得BD的长度为15米;(注:BD⊥CE)
②根据手中剩余线的长度计算出风筝线BC的长为25米;
③牵线放风筝的小明身高1.6米.
求风筝的高度CE.
解:在Rt△CDB中,由勾股定理,得CD===20(米).
∴CE=CD+DE=20+1.6=21.6(米).
答:风筝的高度CE为21.6米.
14.小强想知道广场上旗杆的高度,他发现旗杆顶端的绳子垂到旗台上还多0.8米,当他把绳子的下端在旗台上拉开2米后,发现下端刚好接触旗台面,你能帮他算出来这根旗杆的高吗?
解:设这根旗杆的高为x米,则绳子的长为(x+0.2)米,
依题意,得方程 x2+22=(x+0.2)2
解得:x=9.9.
答:这根旗杆的高为9.9米.
15.如图,甲船以16海里/时的速度离开码头向东北方向航行,乙船同时由码头向西北方向航行,已知两船离开码头1.5 h后相距30海里,问乙船每小时航行多少海里?
解:设码头所在的位置为C,1.5 h后甲船所在位置为A,乙船所在位置为B,则
AC与正北方向的夹角为45°,BC与正北方向的夹角为45°,
∴∠ACB=90°.
在Rt△ABC中,∵AC=16×=24(海里),AB=30海里.
由勾股定理,得 BC2=AB2-AC2=302-242=324.解得BC=18.
∴18÷=12(海里/小时).
答:乙船每小时航行12海里.
16.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这跟芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?
解:设水池的深度为x尺,由题意得:
x2+52=(x+1)2,
解得:x=12,
则x+1=13,
答:水深12尺,芦苇长13尺.
17.如图,在一棵树(AD)的10 m高处(B)有两只猴子,其中一只爬下树走向离树20 m(C)的池塘,而另一只则爬到树顶(D)后直扑池塘,如果两只猴子经过的路程相等,那么这棵树有多高?
解:B为猴子的初始位置,则AB=10 m,C为池塘,则AC=20 m.
设BD=x m,则树高AD=(10+x)m.
由题意知BD+CD=AB+AC,∴x+CD=20+10.
∴CD=(30-x)m.
在Rt△ACD中,∠A=90°,
由勾股定理得AC2+AD2=CD2,
∴202+(10+x)2=(30-x)2.∴x=5.
∴AD=10+5=15(m).
故这棵树有15 m高.
18.如图,在Rt△ABC中,∠C=90°,AB=5 cm,AC=3 cm,动点P从点B出发沿射线BC以1 cm/s的速度移动,设运动的时间为t s.
(1)求BC边的长;
(2)当△ABP为直角三角形时,求t的值.
解:(1)在Rt△ABC中,由勾股定理,得BC2=AB2-AC2=52-32=16.
∴BC=4 cm.
(2)由题意,知BP=t cm,
①当∠APB为直角时,如图1,点P与点C重合,BP=BC=4 cm,
∴t=4;
②当∠BAP为直角时,如图2,BP=t cm,CP=(t-4)cm,AC=3 cm,
在Rt△ACP中,AP2=AC2+CP2=32+(t-4)2.
在Rt△BAP中,AB2+AP2=BP2,
即52+[32+(t-4)2]=t2.
解得t=.
∴当△ABP为直角三角形时,t=4或t=.