二元一次方程组的应用
【学时安排】
2学时
【第一学时】
【学习目标】
1.经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型;
2.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;
【学习重难点】
经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型。
【学习过程】
1.古老的“鸡兔同笼问题”“今有鸡兔同笼,上有三十五头,下有九十四足。问鸡、兔各几何?”
方案一:列一元一次方程解 方案二:列二元一次方程组
设有x只鸡,则有( )只兔。 设有x只鸡,y只兔,
根据题意,得 依题意得
____十____=94.
问:比较两种列方程解应用题的方法,说明哪种方法更好列出方程?
2.某校组织198名毕业学生到林卡玩,一部分学生坐在草地上唱歌,另一部分学生在河边散步,唱歌的学生是散步学生的2倍还多10人。问唱歌、散步的学生各有多少人?
解:设唱歌的学生有x人,散步的学生有y人。
根据题意,得:
____________________________。
3.某班师生56人到某旅游景点参观,教师每张门票8元,学生每门票5元,共付304元。问教师学生各多少人?
解:设教师x人,学生y人。根据题意,得:
4.某藏药厂生产的珍珠70丸有大小盒两种包装,2大盒5小盒共装50粒,3大盒4小盒共装54粒。大盒与小盒每盒各装多少粒?
解:设大盒装x粒,小盒装y粒。
根据题意列方程组,得_____________________。
解方程组,得____________。
答:大盒装______粒,小盒装______粒。
【达标检测】
1.(列方程组解应用题)篮球比赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。某队为了争取较好名次,想在全部22场比赛中得40分,那么这个队胜负场数分别是多少?
2.哥哥弟弟两人相距48米,两人同时出发相向而行,16秒相遇;同时出发同向而行,哥哥120秒可追上弟弟。两人的速度各是多少?
3.某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?
4.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本。这个班有多少学生?这些图书共有多少本?
5.有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子。原来有多少只鸽子和多少个鸽笼?
【第二学时】
【学习目标】
能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出二元一次方程组,解较简单的“调、配”应用题。
【学习重难点】
能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出二元一次方程组,解较简单的“调、配”应用题。
【学习过程】
1.5辆卡车和4辆拖拉机2次能运货68吨;3辆卡车和2辆拖拉机3次能运货60吨。问一辆卡车和一辆拖拉机一次各运货多少吨?设一辆卡车一次运x吨,一辆拖拉机一次运货y吨
根据题意列方程组,得__________________________________
2.学生在手工实践课中,遇到这样一个问题:要用20张白卡纸制作包装纸盒,每张白卡纸可以做盒身2个,或者做盒底盖3个,如果1个盒身和2个盒底盖可以做成一个包装纸盒,那么能否将这些白卡纸分成两部分,一部分做盒身,一部分做盒底盖,使做成的盒身和盒底盖正好配套?设白卡纸分成两部分,X张做盒身,Y张做盒底盖,使做成的盒身和盒底盖正好配套。
根据题意列方程组,得__________________________________
3.12支球队进行单循环比赛(每队共赛11场),规定胜一场得3分,平一场得1分,负一场得0分。若有一支球队最终的积分为18分,那么这个球队平几场?设这支球队共胜X场,平Y场,则负_______场。
根据题意列方程组,得__________________________________
4.乙组人数是甲组人数的一半,若将乙组人数的三分之一调入甲组,则甲组人数比乙组多15人。设甲组原有x人,乙组原有y人,则可得方程组为 。
【达标检测】
1.初一(6)班举办一次集邮展览,展出的邮票比平均每人3张多32张,比平均每人4 张少15张,求这个班的学生数及展出邮票的张数。
2.木工厂有28人,2个工人一天可以加工3张桌子,3个工人一天可加工10只椅子,现在如何安排劳动力,使生产的一张桌子与4只椅子配套?
3.一外圆凳由一个凳面和三条腿组成,如果1立方米木材可制作300条腿或制作凳面50个,现有9立方米的木材,为充分利用材料,请你设计一下,用多少木材做凳面,用多少木材做凳腿,最多能生产多少张圆凳?
4.某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?
5.某中学组织七年级同学到长城春游,原计划租用45座客车若干辆,但有15人没有座位;如果租用60座客车,则多出1辆,且其余客车恰好坐满,已知45座客车日租金为每辆220元,60座客车日租金为每辆300元,试问:(1)七年级人数是多少?原计划租用45座客车多少辆?(2)要使每个同学都有座位,怎样租车更合算?