文科数学:专题:立体几何 历年高考真题汇编(原卷版+解析版)

文档属性

名称 文科数学:专题:立体几何 历年高考真题汇编(原卷版+解析版)
格式 zip
文件大小 1.5MB
资源类型 试卷
版本资源 人教新课标A版
科目 数学
更新时间 2020-03-23 13:52:51

文档简介








中小学教育资源及组卷应用平台


专题 立体几何 历年高考真题
1.(2018·全国Ⅲ卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是(  )

INCLUDEPICTURE"18GS10.tif"
2.(2018·全国Ⅰ卷)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为(  )
A.12π B.12π
C.8π D.10π
3.(2019·全国Ⅲ卷)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体.其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为________g.

4.(2019·全国Ⅱ卷)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图①).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图②是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________(本题第一空2分,第二空3分).
INCLUDEPICTURE"19L11.TIF"
5.(2018·全国Ⅰ卷)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为(  )
INCLUDEPICTURE"18GW2.TIF"
A.2 B.2 C.3 D.2
6.(2019·唐山模拟)已知某几何体的三视图如图所示(俯视图中曲线为四分之一圆弧),则该几何体的表面积为(  )
INCLUDEPICTURE"P57.TIF"
A.1- B.3+ C.2+ D.4
7. (1)(2019·浙江卷)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是(  )
INCLUDEPICTURE"19W42.TIF"
A.158 B.162 C.182 D.324
(2)(2019·天津卷)已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.
8.(2019·北京卷)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为________.
INCLUDEPICTURE"19L32.TIF"
9.(2018·全国Ⅲ卷)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D-ABC体积的最大值为(  )
A.12 B.18 C.24 D.54
10.(2019·江苏卷)如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是________.

11.(2019·全国Ⅱ卷)设α,β为两个平面,则α∥β的充要条件是(  )
A.α内有无数条直线与β平行
B.α内有两条相交直线与β平行
C.α,β平行于同一条直线
D.α,β垂直于同一平面
12.(2019·全国Ⅲ卷)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则(  )

A.BM=EN,且直线BM,EN是相交直线
B.BM≠EN,且直线BM,EN是相交直线
C.BM=EN,且直线BM,EN是异面直线
D.BM≠EN,且直线BM,EN是异面直线
13.(2018·全国Ⅰ卷)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为(  )
A. B. C. D.

14.(2019·全国Ⅰ卷)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.

(1)证明:MN∥平面C1DE;
(2)求点C到平面C1DE的距离.


15.(2019·江苏卷)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.

求证:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.


16. (2019·全国Ⅲ卷)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②.
INCLUDEPICTURE"19L24.TIF"
(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
(2)求图②中的四边形ACGD的面积.


17. (2019·北京卷)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.

(1)求证:BD⊥平面PAC;
(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;
(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.


18.(2018·全国Ⅰ卷)在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为(  )
A.8 B.6 C.8 D.8

19.(2018·北京卷)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.

(1)求证:PE⊥BC;
(2)求证:平面PAB⊥平面PCD;
(3)求证:EF∥平面PCD.


20.(2019·全国Ⅰ卷)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为,那么P到平面ABC的距离为________.




21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)



HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)










中小学教育资源及组卷应用平台


专题 概率与统计 历年高考真题汇编解析版
1.(2018·全国Ⅲ卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是(  )

INCLUDEPICTURE"18GS10.tif"
解析 由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.
答案 A
2.(2018·全国Ⅰ卷)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为(  )
A.12π B.12π
C.8π D.10π
解析 因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为2,底面圆的直径为2.所以S表面积=2×π×()2+2π××2=12π.
答案 B
3.(2019·全国Ⅲ卷)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体.其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为________g.

解析 由题知挖去的四棱锥的底面是一个菱形,其对角线长分别为6 cm和4 cm,
故V挖去的四棱锥=××4×6×3=12(cm3).
又V长方体=6×6×4=144(cm3),
所以模型的体积为
V长方体-V挖去的四棱锥=144-12=132(cm3),
所以制作该模型所需原料的质量为132×0.9=118.8(g).
答案 118.8
4.(2019·全国Ⅱ卷)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图①).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图②是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________(本题第一空2分,第二空3分).
INCLUDEPICTURE"19L11.TIF"
解析 依题意知,题中的半正多面体的上部分有9个面,中间部分有8个面,下部分为9个面,共面9+8+9=26(个)面,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则 x+x+x=1,解得x=-1,故题中的半正多面体的棱长为-1.
答案 26 -1
5.(2018·全国Ⅰ卷)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为(  )
INCLUDEPICTURE"18GW2.TIF"
A.2 B.2 C.3 D.2
解析 由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4.则从M到N的路径中,最短路径的长度为==2.
INCLUDEPICTURE"18GS33.tif"
6.(2019·唐山模拟)已知某几何体的三视图如图所示(俯视图中曲线为四分之一圆弧),则该几何体的表面积为(  )
INCLUDEPICTURE"P57.TIF"
A.1- B.3+ C.2+ D.4
解析 由题设知,该几何体是棱长为1的正方体被截去底面半径为1的圆柱后得到的,
如图所示,所以表面积
S=2×+2×(1×1)+×2π×1×1=4.故选D.

答案 D
7. (1)(2019·浙江卷)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是(  )
INCLUDEPICTURE"19W42.TIF"
A.158 B.162 C.182 D.324
(2)(2019·天津卷)已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.
解析 (1)由三视图可知,该柱体是一个直五棱柱,如图,棱柱的高为6,底面可以看作由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3.

则底面面积S=×3+×3=27.因此,该柱体的体积V=27×6=162.
故选B.
(2)由题意知圆柱的高恰为四棱锥的高的一半,圆柱的底面直径恰为四棱锥的底面正方形对角线的一半.因为四棱锥的底面正方形的边长为,所以底面正方形对角线长为2,所以圆柱的底面半径为.又因为四棱锥的侧棱长均为,所以四棱锥的高为=2,所以圆柱的高为1.所以圆柱的体积V=π×1=.
答案 (1)B (2)
8.(2019·北京卷)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为________.
INCLUDEPICTURE"19L32.TIF"
解析 由三视图知,该几何体是如图所示的正方体ABCD-A1B1C1D1的棱长为4,去掉四棱柱MQD1A1-NPC1B1(其底面是一个上底为2,下底为4,高为2的直角梯形)所得的几何体,
∵V棱柱=4×=24,
∴所求几何体的体积V=43-24=40.

9.(2018·全国Ⅲ卷)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D-ABC体积的最大值为(  )
A.12 B.18 C.24 D.54
解析 设等边△ABC的边长为x,则x2sin 60°=9,得x=6.设△ABC的外接圆半径为r,则2r=,解得r=2,所以球心到△ABC所在平面的距离d==2,则点D到平面ABC的最大距离d1=d+4=6.所以三棱锥D-ABC体积的最大值Vmax=S△ABC×6=×9×6=18.
答案 B
10.(2019·江苏卷)如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是________.

解析 设长方体中BC=a,CD=b,CC1=c,则abc=120,
∴VE-BCD=×ab×c=abc=10.
答案 10
11.(2019·全国Ⅱ卷)设α,β为两个平面,则α∥β的充要条件是(  )
A.α内有无数条直线与β平行
B.α内有两条相交直线与β平行
C.α,β平行于同一条直线
D.α,β垂直于同一平面
解析 若α∥β,则α内有无数条直线与β平行,当无数条直线互相平行时,α与β可能相交;若α,β平行于同一条直线,则α与β可以平行也可以相交;若α,β垂直于同一个平面,则α与β可以平行也可以相交,故A,C,D中条件均不是α∥β的充要条件.根据两平面平行的判定定理知,若一个平面内有两条相交直线与另一个平面平行,则两平面平行,反之也成立.因此B中条件是α∥β的充要条件.
答案 B
12.(2019·全国Ⅲ卷)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则(  )

A.BM=EN,且直线BM,EN是相交直线
B.BM≠EN,且直线BM,EN是相交直线
C.BM=EN,且直线BM,EN是异面直线
D.BM≠EN,且直线BM,EN是异面直线
解析 连接BD,BE,
∵点N是正方形ABCD的中心,
∴点N在BD上,且BN=DN,
∴BM,EN是△DBE的中线,
∴BM,EN必相交.

连接CM,设DE=a,则EC=DC=a,MC=a,
∵平面ECD⊥平面ABCD,且BC⊥DC,
∴BC⊥平面EDC,
则BD=a,BE==a,
BM==a,
又EN==a,
故BM≠EN.
答案 B
13.(2018·全国Ⅰ卷)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为(  )
A. B. C. D.
解析 如图,依题意,平面α与棱BA,BC,BB1所在直线所成角都相等,容易得到平面AB1C符合题意,进而所有平行于平面AB1C的平面均符合题意.
由对称性,知过正方体ABCD-A1B1C1D1中心的平面面积应取最大值,此时截面为正六边形EFGHIJ.正六边形EFGHIJ的边长为,将该正六边形分成6个边长为的正三角形.故其面积为6××=.

答案 A
14.(2019·全国Ⅰ卷)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.

(1)证明:MN∥平面C1DE;
(2)求点C到平面C1DE的距离.
(1)证明 连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=B1C.
INCLUDEPICTURE"19W7.TIF"
又因为N为A1D的中点,所以ND=A1D.
由题设知A1B1綊DC,可得B1C綊A1D,故ME綊ND,
因此四边形MNDE为平行四边形,所以MN∥ED.
又MN?平面C1DE,ED?平面C1DE,所以MN∥平面C1DE.
(2)解 过点C作C1E的垂线,垂足为H.
由已知可得DE⊥BC,DE⊥C1C,又BC∩C1C=C,BC,C1C?平面C1CE,所以DE⊥平面C1CE,
故DE⊥CH.所以CH⊥平面C1DE,
故CH的长即为点C到平面C1DE的距离.
由已知可得CE=1,C1C=4,
所以C1E=,故CH=.
从而点C到平面C1DE的距离为.
15.(2019·江苏卷)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.

求证:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
证明 (1)因为D,E分别为BC,AC的中点,
所以ED∥AB.
在直三棱柱ABC-A1B1C1中,AB∥A1B1,
所以A1B1∥ED.
又因为ED?平面DEC1,A1B1?平面DEC1,
所以A1B1∥平面DEC1.
(2)因为AB=BC,E为AC的中点,所以BE⊥AC.
因为三棱柱ABC-A1B1C1是直棱柱,所以C1C⊥平面ABC.
又因为BE?平面ABC,所以C1C⊥BE.
又C1C?平面A1ACC1,AC?平面A1ACC1,且C1C∩AC=C,
所以BE⊥平面A1ACC1.
因为C1E?平面A1ACC1,所以BE⊥C1E.
16. (2019·全国Ⅲ卷)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②.
INCLUDEPICTURE"19L24.TIF"
(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
(2)求图②中的四边形ACGD的面积.
(1)证明 由已知得AD∥BE,CG∥BE,所以AD∥CG,
所以AD,CG确定一个平面,从而A,C,G,D四点共面.
由已知得AB⊥BE,AB⊥BC,且BE∩BC=B,BE,BC?平面BCGE,
所以AB⊥平面BCGE.
又因为AB?平面ABC,所以平面ABC⊥平面BCGE.
(2)解 如图,取CG的中点M,连接EM,DM.
因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,又CG、EM?平面BCGE,故DE⊥CG,DE⊥EM.

由已知,四边形BCGE是菱形,且∠EBC=60°,得EM⊥CG,
又DE∩EM=E,DE,EM?平面DEM,故CG⊥平面DEM.
又DM?平面DEM,因此DM⊥CG.
在Rt△DEM中,DE=1,EM=,
故DM=2.又CG=BF=2,
所以四边形ACGD的面积为S=2×2=4.
17. (2019·北京卷)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.

(1)求证:BD⊥平面PAC;
(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;
(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.
(1)证明 因为PA⊥平面ABCD,BD?平面ABCD,
所以PA⊥BD.

因为底面ABCD为菱形,
所以BD⊥AC.
又PA∩AC=A,
所以BD⊥平面PAC.
(2)证明 因为PA⊥平面ABCD,AE?平面ABCD,
所以PA⊥AE.
因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,
所以AE⊥CD.又因为AB∥CD,所以AB⊥AE.
又AB∩PA=A,所以AE⊥平面PAB.
因为AE?平面PAE,所以平面PAB⊥平面PAE.
(3)解 棱PB上存在点F,使得CF∥平面PAE.理由如下:取PB的中点F,PA的中点G,连接CF,FG,EG,
则FG∥AB,且FG=AB.
因为底面ABCD为菱形,且E为CD的中点,
所以CE∥AB,且CE=AB.
所以FG∥CE,且FG=CE.
所以四边形CEGF为平行四边形.所以CF∥EG.
因为CF?平面PAE,EG?平面PAE,
所以CF∥平面PAE.
18.(2018·全国Ⅰ卷)在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为(  )
A.8 B.6 C.8 D.8
解析 连接BC1,因为AB⊥平面BB1C1C,所以∠AC1B=30°,AB⊥BC1,所以△ABC1为直角三角形.又AB=2,所以BC1=2.又B1C1=2,所以BB1==2,故该长方体的体积V=2×2×2=8.故选C.
答案 C
19.(2018·北京卷)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.

(1)求证:PE⊥BC;
(2)求证:平面PAB⊥平面PCD;
(3)求证:EF∥平面PCD.
证明 (1)因为PA=PD,E为AD的中点,
所以PE⊥AD.
因为底面ABCD为矩形,
所以BC∥AD.所以PE⊥BC.
(2)因为底面ABCD为矩形,所以AB⊥AD.
又因为平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,AB?平面ABCD,
所以AB⊥平面PAD,且PD?平面PAD.
所以AB⊥PD.
又因为PA⊥PD,且PA∩AB=A,
所以PD⊥平面PAB.又PD?平面PCD,
所以平面PAB⊥平面PCD.
(3)如图,取PC中点G,连接FG,DG.
因为F,G分别为PB,PC的中点,
所以FG∥BC,FG=BC.
INCLUDEPICTURE"18GW39.TIF"
因为ABCD为矩形,且E为AD的中点,
所以DE∥BC,
DE=BC.
所以DE∥FG,DE=FG.
所以四边形DEFG为平行四边形.
所以EF∥DG.
又因为EF?平面PCD,DG?平面PCD,
所以EF∥平面PCD.
20.(2019·全国Ⅰ卷)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为,那么P到平面ABC的距离为________.
解析 如图,过点P作PO⊥平面ABC于O,则PO为P到平面ABC的距离.
再过O作OE⊥AC于E,OF⊥BC于F,
连接PC,PE,PF,则PE⊥AC,PF⊥BC.

所以PE=PF=,所以OE=OF,
所以CO为∠ACB的平分线,
即∠ACO=45°.
在Rt△PEC中,PC=2,PE=,所以CE=1,
所以OE=1,所以PO===.
答案 




21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)



HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)