PAGE
平行线的性质教学设计
一、教材分析与设计
本节课是七年级数学(下册)第五章第3节内容——平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。
《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
二、教学目标
1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。
2、过程与方法:在平行线的性质的探究过程中,让学生经历观察、比较、
联想、分析、归纳、猜想、概括的全过程。通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
3、情感态度与价值观:在探究活动中,让学生获得亲自参与体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。
三、教学重、难点
1、重点:对平行线性质的掌握与应用
2、难点:对平行线性质1的探究
四、教学用具
1、教具:多媒体平台及多媒体课件
2、学具:三角尺、量角器、剪刀
五、教学过程
(一)创设情境,设疑激思
1、播放一组幻灯片。
内容: ① 供火车行驶的铁轨上; ② 游泳池中的泳道隔栏;
③ 横格纸中的线。
2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
3、学生活动:针对问题,学生思考后回答——① 同位角相等两直
线平行; ② 内错角相等两直线平行; ③ 同旁内角互补两直线平行;
4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:5.3平行线的性质(板书)
(二)数形结合,探究性质
1、画图探究,归纳猜想
教师提要求,学生实践操作:任意画出两条平行线( a ∥ b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)
教师提出研究性问题一:
指出图中的同位角,并度量这些角,把结果填入下表:
第一组 第二组 第三组 第四组
同位角
角的度数
数量关系
教师提出研究性问题二:
将画出图中的同位角任先一组剪下后叠合。
学生活动一:画图 ----度量----填表
----猜想
学生活动二:画图 ----剪图----叠合
让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。
教师提出研究性问题三:
再画出一条截线 d,看你的猜想结论是否仍然成立?
学生活动:探究、按小组讨论,最后得出结论:仍然成立。
2、教师用《几何画板》课件验证猜想,让学生直观感受猜想
3.教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
(三)引申思考,培养创新
教师提出研究性问题四:
请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么
关系?
学生活动:独立探究 ----小组讨论----成果展示。
教师活动:评价学生的研究成果,并引导学生说理
因为a ∥ b (已知)
所以∠ 1= ∠ 2(两直线平行,同位角相等)
又 ∠ 1= ∠ 3(对顶角相等)
∠ 1+ ∠ 4=180°(邻补角的定义)
所以∠ 2= ∠ 3(等量代换)
∠ 2+ ∠ 4=180°(等量代换)
教师展示:
平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直
线平行,内错角相等)
平行线性质2:两条平行线被第三条直线所截,同旁内角互补。(两
直线平行,同旁内角互补)
(四)实际应用,优势互补
(抢答)课本 练一练 1、2
(五)课堂总结
这节课你有哪些收获?
1、学生总结:平行线的性质1、2、3
2、教师补充总结:
⑴ 用“运动”的观点观察数学问题;(如我们前面将同位角剪下
叠合后分析问题)
⑵ 用数形结合的方法来解决问题;(如我们前面将同位角测量后
分析问题)
⑶ 用准确的语言来表达问题;(如平行线的性质1、2、3的表述)
⑷ 用逻辑推理的形式来论证问题。(如我们前面对性质2和3的
说理过程)
(六)作业
学习与评价习题5.3 1、2、3;
六、教学反思:
本节课首先提出问题:
1.请同学们回顾前面学过的平行线的判定方法,并说出它们的已知和结论分别是什么?
2、把这三句话的已知和结论颠倒一下,可得到怎样的语句?它们正确吗?
这样通过复习旧知,引出新知,通过提问,让学生思考,针对问题,敢于发表自己的见解。紧接着让学生动手操作,利用学习的平行线的画法,画出两条互相平行的直线,作出截线,找出其中的同位角,让学生讨论用什么样的方法可以验证同位角之间的关系,学生说出可以用度量的方法或剪切的方法来验证,然后让学生选择其中的一个方法进行验证,把验证的结论告诉大家,从而得出平行线的性质一,用这样的方法可以让学生都参与到教学中来,提高了他们动手、动脑的能力,而且增加了学习兴趣。再让学生用“∵”、“∴”的推理形式,也就是数学符号语言的形式把性质一表示出来。这样可以增强学生的数学符号感。
另外两个性质让学生想办法验证,再利用性质一来推导,加强了学生的逻辑推理能力。
反思本节课的教学有以下成功之处:
1、这节课是在学生已学习平行线判断方法的基础上进行的,所以我通过创设一个疑问:能不能通过两直线平行,来得到同位角相等呢,自然引入新课,激发学生的思考,进而引导学生进行平行线性质的探索。
2、整个课最突出的环节是平行线性质的得到过程,事先让学生准备好白纸,三角板,在上课时学生通过自主画图进行探索,得到猜想,再通过验证发现的。即在学生充分活动的基础上,由学生自己发现问题的结论,让学生感受成功的喜悦,增强学习的兴趣和学习的自信心。在探究“两直线平行,同位角相等”时,要求全体学生参与,体现了新课程理念下的交流与合作。
3、在教学中,设计了练习环节,加深了学生对平行性质的理解。在练习的设置过程中,从简到难,由简单的平行线性质的应用到平行线性质两步或三步运用,学生容易接受。
这节课存在的问题:
1、在上课过程中,担心学生由于基础差,不能很好的掌握知识,所以新课教学时间过长,学生练习时间短。
2、欠缺对“学困生”的关注,没能用更好的语言激发他们。
3、没能进行很好的知识延伸和拓展。
a
b
c
1
2
3
4
PAGE
5