(新教材)高中数学人教A版必修第二册 10.3.2 随机模拟(课件:26张PPT+学案)

文档属性

名称 (新教材)高中数学人教A版必修第二册 10.3.2 随机模拟(课件:26张PPT+学案)
格式 zip
文件大小 4.6MB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2020-03-28 21:11:16

文档简介

10.3.2 随机模拟
课标要求
素养要求
了解随机数的意义,会用模拟方法估计概率,理解用模拟法估计概率的实质.
通过了解随机数的意义及用模拟的方法估计概率,发展数学抽象及数据分析素养.
教材知识探究
在求解频率与概率的关系时需要做大量的重复试验去验证.既费时又费力,有没有更好的其它办法可以替代试验呢?
问题 如何产生随机数?
提示 我们可以利用计算器或计算机产生随机数.
1.随机数的产生
应用计算器或计算机产生随机数时要特别注意遵照随机数产生的方法进行,切不可随意改变其步骤顺序和操作程序,否则会出现错误.
(1)标号:把n个大小、形状相同的小球分别标上1,2,3,…,n.
(2)搅拌:放入一个袋中,把它们充分搅拌.
(3)摸取:从中摸出一个.
这个球上的数就称为从1~n之间的随机整数,简称随机数.
2.伪随机数的产生
(1)规则:依照确定的算法.
(2)特点:具有周期性(周期很长).
(3)性质:它们具有类似随机数的性质.
计算机或计算器产生的随机数并不是真正的随机数,我们称为伪随机数.
3.产生随机数的常用方法
①用计算器产生;②用计算机产生;③抽签法.
4.随机模拟方法(蒙特卡洛方法)
利用计算机或计算器产生的随机数来做模拟试验,通过模拟试验得到的频率来估计概率,这种用计算机或计算器模拟试验的方法称为随机模拟方法或蒙特卡洛方法.
教材拓展补遗
[微判断]
在用计算器模拟抛硬币试验时,假设计算器只能产生0~9之间的随机数,判断下列说法是否正确.
(1)可以用0,2,4,6,8来代表正面.(√)
(2)可以用1,2,3,6,8来代表正面.(√)
(3)可以用4,5,6,7,8,9来代表正面.(×)
(4)产生的100个随机数中不一定恰有50个偶数.(√)
提示 必须保证每个号码出现的机会是相等的,正反面的出现也是等可能的才行.
[微训练]
用随机模拟的方法估计概率时,其准确程度决定于(  )
A.产生的随机数的大小 B.产生的随机数的个数
C.随机数对应的结果 D.产生随机数的方法
解析 用随机模拟的方法估计概率时,产生的随机数越多,准确程度越高,故选B.
答案 B
[微思考]
用计算机模拟试验来代替大量的重复试验有什么优点?
提示 用频率估计概率时,需做大量的重复试验,费时费力,并且有些试验具有破坏性,有些试验无法真正进行.因此利用计算机进行随机模拟试验就成为一种很重要的替代方法,它可以在短时间内多次重复地来做试验.
题型一 随机数产生的方法
【例1】 要产生1~25之间的随机整数,你有哪些方法?
解 法一 
可以把25个大小形状相同的小球分别标上1,2,3,…,24,25,放入一个袋中,把它们充分搅拌,然后从中摸出一个,这个球上的数就称为随机数,放回后重复以上过程,就得到一系列的1~25之间的随机整数.
法二 可以利用计算机产生随机数,以Excel为例:
(1)选定A1格,键入“=RANDBETWEEN(1,25)”,按Enter键,则在此格中的数是随机产生的;
(2)选定A1格,点击复制,然后选定要产生随机数的格,比如A2至A100,点击粘贴,则在A2至A100的格中均为随机产生的1~25之间的数,这样我们就很快就得到了100个1~25之间的随机数,相当于做了100次随机试验.
规律方法 随机数产生的方法比较
方法
抽签法
用计算器或计算机产生
优点
保证机会均等
操作简单,省时、省力
缺点
耗费大量人力、物力、时间,或不具有实际操作性
由于是伪随机数,故不能保证完全等可能
【训练1】 某校高一年级共20个班,1 200名学生,期中考试时如何把学生分配到40个考场中去?
解 要把1 200人分到40个考场,每个考场30人,可用计算机完成.
(1)按班级、学号顺序把学生档案输入计算机.
(2)用随机函数按顺序给每个学生一个随机数(每人都不相同).
(3)使用计算机的排序功能按随机数从小到大排列,可得到1200名学生的考试号0001,0002,…,1200,然后0001~0030为第一考场,0031~0060为第二考场,依次类推.
题型二 用随机模拟估计概率
此种求概率的方法所得结果是不精确的,且每次模拟试验最终得到的概率值不一定是相同的
【例2】 盒中有大小、形状相同的5个白球、2个黑球,用随机模拟法求下列事件的概率:
(1)任取一球,得到白球.
(2)任取三球(分三次,每次放回再取),都是白球.
解 用计算器或计算机产生1到7之间取整数值的随机数,用1,2,3,4,5表示白球,6,7表示黑球.
(1)统计随机数个数N及小于6的个数N1,则即为任取一球,得到白球的概率的近似值.
(2)三个数一组(每组内可重复),统计总组数K及三个数都小于6的组数K1,则即为任取三球(分三次,每次放回再取),都是白球的概率的近似值.
规律方法 用随机数模拟法求事件概率的方法
在使用整数随机数模拟试验时,首先要确定随机数的范围和用哪个代表试验结果.
(1)试验的基本结果是等可能时,样本点的总数即为产生随机数的范围,每个随机数代表一个样本点.
(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数.
【训练2】 一个袋中有7个大小、形状相同的小球,6个白球,1个红球,现任取1个,若为红球就停止,若为白球就放回,搅拌均匀后再接着取,试设计一个模拟试验计算恰好第三次摸到红球的概率.
解 用1,2,3,4,5,6表示白球,7表示红球,利用计算器或计算机产生1到7之间(包括1和7)取整数值的随机数.因为要求恰好第三次摸到红球的概率,所以每三个随机数作为一组.如下,产生20组随机数:
666 743 671 464 571 561 156 567 732 375
716 116 614 445 117 573 552 274 114 662
就相当于做了20次试验,在这些数组中,前两个数字不是7,第三个数字恰好是7就表示第一次、第二次摸到的都是白球,第三次摸到的是红球,它们分别是567和117,共两组,因此恰好第三次摸到红球的概率约为=0.1.
题型三 用随机模拟估计较复杂事件的概率
对于满足“有限性”但不满足“等可能性”的概率问题,我们都可以采用随机模拟方法
【例3】 种植某种树苗,成活率为0.9,请采用随机模拟的方法估计该树苗种植5棵恰好4棵成活的概率.写出模拟试验的过程,并求出所求概率.
解 先由计算机随机函数RANDBETWEEN(0,9),或计算器的随机函数RANDI(0,9)产生0到9之间取整数值的随机数,指定1至9的数字代表成活,0代表不成活,再以每5个随机数为一组代表5次种植的结果.
经随机模拟产生如下30组随机数:
69801 66097 77124 22961 74235 31516
29747 24945 57558 65258 74130 23224
37445 44344 33315 27120 21782 58555
61017 45241 44134 92201 70362 83005
94976 56173 34783 16624 30344 01117
这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵成活,共有9组这样的数,于是得到种植5棵这样的树苗恰有4棵成活的概率近似为=0.3.
规律方法 较复杂模拟试验的设计及产生随机数的方法
(1)解决此类问题的第一个关键是设计试验.首先需要全面理解题意,在理解题意的基础上,根据题目本身的特点来设计试验,应把设计试验的重点放在确定哪个或哪些数字代表哪些试验结果上,并确保符合题意与题目要求.
(2)在试验方案正确的前提下,要使模拟试验所得的估计概率值与实际概率值更接近,则需使试验次数尽可能的多,随机数的产生更切合实际.
(3)用计算器或计算机产生随机数的方法有两种:
①利用带有PRB功能的计算器产生随机数;
②利用计算机软件产生随机数,例如用Excel软件产生随机数.
对上述两种方法,需严格按照其操作步骤与顺序来进行.
【训练3】 甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,试用随机模拟的方法求乙获胜的概率.
解 利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数
034 743 738 636 964 736 614 698 637 162
332 616 804 560 111 410 959 774 246 762
428 114 572 042 533 237 322 707 360 751,就相当于做了30次试验.如果恰有2个或3个数在6,7,8,9中,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707,共11个.所以采用三局两胜制,乙获胜的概率约为≈0.367.
一、素养落地
1.通过了解随机数的意义,提升数学抽象素养.通过用模拟方法估计概率,培养数据分析素养.
2.随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验.要熟练掌握随机数产生的方法以及随机模拟试验的步骤:(1)设计概率模型;(2)进行模拟试验;(3)统计试验结果.
3.计算器和计算机产生随机数的方法
用计算器的随机函数RANDI(a,b)或计算机的随机函数RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随机数.
二、素养训练
1.掷两枚骰子,用随机模拟方法估计出现点数之和为9的概率时,产生的整数值随机数中,每几个数字为一组(  )
A.1 B.2 C.9 D.12
解析 由于掷两枚骰子,所以产生的整数值随机数中,每2个数字为一组.
答案 B
2.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示未命中;再以每三个随机数为一组代表三次投篮的结果.经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率约为(  )
A.0.35 B.0.25 C.0.20 D.0.15
解析 易知20组随机数中表示恰有两次命中的数据有191,271,932,812,393,所以该运动员三次投篮恰有两次命中的概率约为=0.25.
答案 B
3.在利用整数随机数进行随机模拟试验中,整数a到整数b之间的每个整数出现的可能性是________.
解析 [a,b]中共有b-a+1个整数,每个整数出现的可能性相等,所以每个整数出现的可能性是.
答案 
4.在一个盒中装有10支圆珠笔,其中7支一级品,3支二级品,任取一支,用模拟方法求取到一级品的概率.
解 设事件A=“取到一级品”.
(1)用计算机的随机函数RANDBETWEEN(1,10)或计算器产生1到10之间的整数随机数,分别用1,2,3,4,5,6,7表示取到一级品,用8,9,10表示取到二级品.
(2)统计试验总次数N及其中出现1至7之间数的次数N1.
(3)计算频率fn(A)=,即为事件A的概率的近似值.
基础达标
一、选择题
1.下列不能产生随机数的是(  )
A.抛掷骰子试验
B.抛硬币
C.计算器
D.正方体的六个面上分别写有1,2,2,3,4,5,抛掷该正方体
解析 D项中,出现2的概率为,出现1,3,4,5的概率均是,则D项不能产生随机数.
答案 D
2.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表的第1行第5列和第6列数字开始由左向右依次选取两个数字,则选出来的第5个个体的编号为(  )
7961 9507 8403 1379 5103 2094 4316 8317
1869 6254 0738 9261 5789 8106 4138 4975
A.20 B.16 C.17 D.18
解析 根据题意,从95开始,依次读取95(不在1~20内,舍),07,84(不在1~20内,舍),03,13,79(不在1~20内,舍),51(不在1~20内,舍),03(重复,舍),20,94(不在1~20内,舍),43(不在1~20内,舍),16(第5个号码出现,停止).
答案 B
3.天气预报说,在今后的三天中,每一天下雨的概率均为40%,用随机模拟的方法估计这三天中恰有两天下雨的概率.可利用计算机产生0到9之间的取整数值的随机数,如果我们用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,顺次产生的随机数如下:
907 966 191 925 271 932 812 458 569 683
631 257 393 027 556 488 730 113 137 989
则这三天中恰有两天下雨的概率约为(  )
A. B. C. D.
解析 由题意知,模拟三天中恰有两天下雨的结果,经随机模拟产生了20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191,271,932,812,631,393,137,共7组随机数,三天中恰有两天下雨的概率约为.
答案 B
4.假定某运动员每次投掷飞镖正中靶心的概率为40%,现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:
93 28 12 45 85 69 68 34 31 25
73 93 02 75 56 48 87 30 11 35
据此估计,该运动员两次掷镖恰有一次正中靶心的概率为(  )
A.0.50 B.0.45 C.0.40 D.0.35
解析 两次掷镖恰有一次正中靶心表示随机数中有且只有一个数为1,2,3,4中的一个.它们分别是93,28,45,25,73,93,02,48,30,35,共10个,因此所求的概率为=0.50.
答案 A
5.袋子中有四个小球,分别写有“春、夏、秋、冬”四个字,从中任取一个小球,取到“冬”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“春、夏、秋、冬”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:
13 24 12 32 43 14 24 32 31 21
23 13 32 21 24 42 13 32 21 34
据此估计,直到第二次就停止的概率为(  )
A. B. C. D.
解析 20组随机数中,第一次不是4且第二次是4的数共有5组,故估计直到第二次就停止的概率为=.
答案 B
二、填空题
6.抛掷两颗相同的骰子,用随机模拟方法估计“向上点数的和是6的倍数”的概率时,用1,2,3,4,5,6分别表示向上的点数是1,2,3,4,5,6,用计算器或计算机分别产生1到6的两组整数随机数各60个,每组第i个数组成一组,共组成60组数,其中有一组是16,这组数表示的结果是否满足向上点数的和是6的倍数:________.(填“是”或“否”)
解析 16表示第一颗骰子向上的点数是1,第二颗骰子向上的点数是6,则向上点数的和是1+6=7,不表示和是6的倍数.
答案 否
7.在用随机数(整数)模拟“有4个男生和5个女生,从中取4个,求选出2个男生2个女生”的概率时,可让计算机产生1~9的随机整数,并用1~4代表男生,用5~9代表女生.因为是选出4个,所以每4个随机数作为一组.若得到的一组随机数为“4678”,则它代表的含义是________.
解析 用1~4代表男生,用5~9代表女生,4678表示1男3女.
答案 选出的4人中,只有1个男生
8.规定投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀,现采用随机模拟试验的方法估计某选手投掷飞镖的情况,先由计算机根据该选手以往的投掷情况产生随机数0或1,用0表示该次投掷未在8环以上,用1表示该次投掷在8环以上;再以每三个随机数为一组,代表一轮的结果,经随机模拟试验产生了如下20组随机数:
101 111 011 101 010 100 100 011 111 110
000 011 010 001 111 011 100 000 101 101
据此估计,该选手投掷1轮,可以拿到优秀的概率为________.
解析 3次中至少两次投中8环以上的有101,111,011,101,011,111,110,011,111,011,101,101,共12个,因此所求概率约为p==0.6.
答案 0.6
三、解答题
9.某篮球爱好者做投篮练习,假设其每次投篮命中的概率是60%,若该篮球爱好者连续投篮4次,求至少投中3次的概率.用随机模拟的方法估计上述概率.
解 利用计算机或计算器产生0到9之间取整数值的随机数,用1,2,3,4,5,6表示投中,用7,8,9,0表示未投中,这样可以体现投中的概率是60%,因为投篮4次,所以每4个随机数作为一组.例如5727,7895,0123,…,4560,4581,4698,共100组这样的随机数,若所有数组中没有7,8,9,0或只有7,8,9,0中的一个数的数组的个数为n,则至少投中3次的概率近似值为.
10.一个学生在一次竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽取3道;从20道化学题中随机抽取3道;从12道生物题中随机抽取2道,使用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,生物题的编号为36~47).
解 利用计算器的随机函数RANDI(1,15)产生3个不同的1~15之间的整数随机数(如果有一个重复,则重新产生一个);再利用计算器的随机函数RANDI(16,35)产生3个不同的16~35之间的整数随机数(如果有一个重复,则重新产生一个);再用计算器的随机函数RANDI(36,47)产生2个不同的36~47之间的整数随机数(如果有一个重复,则重新产生一个),这样就得到8道题的序号.
能力提升
11.某种心脏手术,成功率为0.6,现采用随机模拟方法估计“3例心脏手术全部成功”的概率:先利用计算器或计算机产生0~9之间取整数值的随机数,由于成功率是0.6,故我们用0,1,2,3表示手术不成功,4,5,6,7,8,9表示手术成功;再以每3个随机数为一组,作为3例手术的结果.经随机模拟产生如下10组随机数:
812 832 569 683 271 989 730 537 925 907
由此估计“3例心脏手术全部成功”的概率约为(  )
A.0.2 B.0.3 C.0.4 D.0.5
解析 由10组随机数知,4~9中恰有三个的随机数有569,989两组,故所求的概率约为=0.2.
答案 A
12.一份测试题包括6道选择题,每题四个选项且只有一个选项是正确的,如果一个学生对每一道题都随机猜一个答案,用随机模拟方法估计该学生至少答对3道题的概率.(已知计算机或计算器做模拟试验可以模拟每次猜对的概率是25%)
解 通过设计模拟试验的方法来解决问题,利用计算机或计算器可以产生0到3之间取整数值的随机数,用0表示猜的选项正确,1,2,3表示猜的选项错误,这样可以体现猜对的概率是25%,因为共猜6道题,所以每6个随机数作为一组.例如,产生25组随机数:
330130 302220 133020 022011 313121 222330 231022 001003 213322 030032 100211 022210 231330 321202 031210 232111 210010 212020 230331 112000 102330 200313 303321 012033
321230
就相当于做了25次试验,在每组数中,如果恰有3个或3个以上的数是0,则表示至少答对3道题,它们分别是001003,030032,210010,112000,即共有4组数,得到该同学6道选择题至少答对3道题的概率近似为=0.16.
创新猜想
13.(多选题)下列关于随机数的说法,错误的是(  )
A.计算器只能产生(0,1)之间的随机数
B.计算机能产生指定两个整数之间的取整数值的随机数
C.计算器或计算机产生的随机数是完全等可能的
D.计算器或计算机产生的随机数是伪随机数
解析 A项,计算器也可以产生a~b上的整数随机数;C项,计算器或计算机产生的随机数是伪随机数,不能保证等可能.
答案 AC
14.(多填题)通过模拟试验产生了20组随机数:
6830 3013 7055 7430 7740 4422 7884
2604 3346 0952 6807 9706 5774 5725
6576 5929 9768 6071 9138 6754
如果恰好有三个数在1,2,3,4,5,6中,表示恰好有三次击中目标,则四次射击中恰好有三次击中目标的概率约为________,四次射击全都击中目标的概率约为________.
解析 表示三次击中目标的分别是3013,2604,5725,6576,6754,共5组数,而随机数总共20组,所以所求的概率近似为=0.25.四次全击中有4422,3346两组,概率约为==0.1.
答案 0.25 0.1
课件26张PPT。10.3.2 随机模拟教材知识探究在求解频率与概率的关系时需要做大量的重复试验去验证.既费时又费力,有没有更好的其它办法可以替代试验呢?
问题 如何产生随机数?
提示 我们可以利用计算器或计算机产生随机数.1.随机数的产生应用计算器或计算机产生随机数时要特别注意遵照随机数产生的方法进行,切不可随意改变其步骤顺序和操作程序,否则会出现错误.大小、形状(1)标号:把n个____________相同的小球分别标上1,2,3,…,n.
(2)搅拌:放入一个袋中,把它们___________.
(3)摸取:从中摸出_______.
这个球上的数就称为从1~n之间的随机整数,简称随机数.充分搅拌一个2.伪随机数的产生(1)规则:依照确定的算法.
(2)特点:具有周期性(周期很长).
(3)性质:它们具有类似___________的性质.
计算机或计算器产生的随机数并不是真正的随机数,我们称为___________.随机数伪随机数3.产生随机数的常用方法①_________________;②_________________;③__________.用计算器产生用计算机产生抽签法4.随机模拟方法(蒙特卡洛方法)利用计算机或计算器产生的随机数来做模拟试验,通过模拟试验得到的_______来估计_______,这种用计算机或计算器模拟试验的方法称为随机模拟方法或蒙特卡洛方法.频率概率教材拓展补遗
[微判断]在用计算器模拟抛硬币试验时,假设计算器只能产生0~9之间的随机数,判断下列说法是否正确.
(1)可以用0,2,4,6,8来代表正面.( )
(2)可以用1,2,3,6,8来代表正面.( )
(3)可以用4,5,6,7,8,9来代表正面.( )
(4)产生的100个随机数中不一定恰有50个偶数.( )
提示 必须保证每个号码出现的机会是相等的,正反面的出现也是等可能的才行.√√×√[微训练]用随机模拟的方法估计概率时,其准确程度决定于(  )
A.产生的随机数的大小 B.产生的随机数的个数
C.随机数对应的结果 D.产生随机数的方法
解析 用随机模拟的方法估计概率时,产生的随机数越多,准确程度越高,故选B.
答案 B[微思考]用计算机模拟试验来代替大量的重复试验有什么优点?
提示 用频率估计概率时,需做大量的重复试验,费时费力,并且有些试验具有破坏性,有些试验无法真正进行.因此利用计算机进行随机模拟试验就成为一种很重要的替代方法,它可以在短时间内多次重复地来做试验.题型一 随机数产生的方法
【例1】 要产生1~25之间的随机整数,你有哪些方法?解 法一 采用抽签法时必须保证任何一个数被选到的概率是等可能的可以把25个大小形状相同的小球分别标上1,2,3,…,24,25,放入一个袋中,把它们充分搅拌,然后从中摸出一个,这个球上的数就称为随机数,放回后重复以上过程,就得到一系列的1~25之间的随机整数.法二 可以利用计算机产生随机数,以Excel为例:
(1)选定A1格,键入“=RANDBETWEEN(1,25)”,按Enter键,则在此格中的数是随机产生的;
(2)选定A1格,点击复制,然后选定要产生随机数的格,比如A2至A100,点击粘贴,则在A2至A100的格中均为随机产生的1~25之间的数,这样我们就很快就得到了100个1~25之间的随机数,相当于做了100次随机试验.规律方法 随机数产生的方法比较【训练1】 某校高一年级共20个班,1 200名学生,期中考试时如何把学生分配到40个考场中去?解 要把1 200人分到40个考场,每个考场30人,可用计算机完成.
(1)按班级、学号顺序把学生档案输入计算机.
(2)用随机函数按顺序给每个学生一个随机数(每人都不相同).
(3)使用计算机的排序功能按随机数从小到大排列,可得到1200名学生的考试号0001,0002,…,1200,然后0001~0030为第一考场,0031~0060为第二考场,依次类推.题型二 用随机模拟估计概率此种求概率的方法所得结果是不精确的,且每次模拟试验最终得到的概率值不一定是相同的【例2】 盒中有大小、形状相同的5个白球、2个黑球,用随机模拟法求下列事件的概率:(1)任取一球,得到白球.
(2)任取三球(分三次,每次放回再取),都是白球.解 用计算器或计算机产生1到7之间取整数值的随机数,用1,2,3,4,5表示白球,6,7表示黑球.规律方法 用随机数模拟法求事件概率的方法
在使用整数随机数模拟试验时,首先要确定随机数的范围和用哪个代表试验结果.
(1)试验的基本结果是等可能时,样本点的总数即为产生随机数的范围,每个随机数代表一个样本点.
(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数.【训练2】 一个袋中有7个大小、形状相同的小球,6个白球,1个红球,现任取1个,若为红球就停止,若为白球就放回,搅拌均匀后再接着取,试设计一个模拟试验计算恰好第三次摸到红球的概率.解 用1,2,3,4,5,6表示白球,7表示红球,利用计算器或计算机产生1到7之间(包括1和7)取整数值的随机数.因为要求恰好第三次摸到红球的概率,所以每三个随机数作为一组.如下,产生20组随机数:
666 743 671 464 571 561 156 567 732 375
716 116 614 445 117 573 552 274 114 662题型三 用随机模拟估计较复杂事件的概率对于满足“有限性”但不满足“等可能性”的概率问题,我们都可以采用随机模拟方法【例3】 种植某种树苗,成活率为0.9,请采用随机模拟的方法估计该树苗种植5棵恰好4棵成活的概率.写出模拟试验的过程,并求出所求概率.解 先由计算机随机函数RANDBETWEEN(0,9),或计算器的随机函数RANDI(0,9)产生0到9之间取整数值的随机数,指定1至9的数字代表成活,0代表不成活,再以每5个随机数为一组代表5次种植的结果.
经随机模拟产生如下30组随机数:
69801 66097 77124 22961 74235 31516
29747 24945 57558 65258 74130 2322437445 44344 33315 27120 21782 58555
61017 45241 44134 92201 70362 83005
94976 56173 34783 16624 30344 01117规律方法 较复杂模拟试验的设计及产生随机数的方法
(1)解决此类问题的第一个关键是设计试验.首先需要全面理解题意,在理解题意的基础上,根据题目本身的特点来设计试验,应把设计试验的重点放在确定哪个或哪些数字代表哪些试验结果上,并确保符合题意与题目要求.
(2)在试验方案正确的前提下,要使模拟试验所得的估计概率值与实际概率值更接近,则需使试验次数尽可能的多,随机数的产生更切合实际.
(3)用计算器或计算机产生随机数的方法有两种:
①利用带有PRB功能的计算器产生随机数;
②利用计算机软件产生随机数,例如用Excel软件产生随机数.
对上述两种方法,需严格按照其操作步骤与顺序来进行.【训练3】 甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,试用随机模拟的方法求乙获胜的概率.解 利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数
034 743 738 636 964 736 614 698 637 162
332 616 804 560 111 410 959 774 246 762
428 114 572 042 533 237 322 707 360 751,一、素养落地
1.通过了解随机数的意义,提升数学抽象素养.通过用模拟方法估计概率,培养数据分析素养.
2.随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验.要熟练掌握随机数产生的方法以及随机模拟试验的步骤:(1)设计概率模型;(2)进行模拟试验;(3)统计试验结果.
3.计算器和计算机产生随机数的方法
用计算器的随机函数RANDI(a,b)或计算机的随机函数RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随机数.二、素养训练
1.掷两枚骰子,用随机模拟方法估计出现点数之和为9的概率时,产生的整数值随机数中,每几个数字为一组(  )A.1 B.2 C.9 D.12
解析 由于掷两枚骰子,所以产生的整数值随机数中,每2个数字为一组.
答案 B2.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示未命中;再以每三个随机数为一组代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率约为(  )
A.0.35 B.0.25 C.0.20 D.0.15答案 B3.在利用整数随机数进行随机模拟试验中,整数a到整数b之间的每个整数出现的可能性是________.4.在一个盒中装有10支圆珠笔,其中7支一级品,3支二级品,任取一支,用模拟方法求取到一级品的概率.解 设事件A=“取到一级品”.
(1)用计算机的随机函数RANDBETWEEN(1,10)或计算器产生1到10之间的整数随机数,分别用1,2,3,4,5,6,7表示取到一级品,用8,9,10表示取到二级品.
(2)统计试验总次数N及其中出现1至7之间数的次数N1.