高中数学人教A版必修3 3.2.1 古典概型(课件:36张PPT+课后作业)

文档属性

名称 高中数学人教A版必修3 3.2.1 古典概型(课件:36张PPT+课后作业)
格式 zip
文件大小 1.1MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2020-03-30 12:58:03

文档简介


(本栏目内容,在学生用书中以独立形式分册装订!)
一、选择题(每小题5分,共20分)
1.一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为(  )
A.          B.
C. D.
解析: 把红球标记为红1、红2,白球标记为白1、白2,本试验的基本事件共有16个,其中2个球同色的事件有8个:红1、红1,红1、红2,红2、红2,红2、红1,白1、白1,白1、白2,白2、白1,白2、白2,故所求概率为P==.
答案: A
2.下列试验中,是古典概型的为(  )
A.种下一粒花生,观察它是否发芽
B.向正方形ABCD内任意投掷一点P,观察点P是否与正方形的中心O重合
C.从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率
D.在区间[0,5]内任取一点,求此点小于2的概率
解析: 对于A,发芽与不发芽的概率一般不相等,不满足等可能性;对于B,正方形内点的个数有无限多个,不满足有限性;对于C,满足有限性和等可能性,是古典概型;对于D,区间内的点有无限多个,不满足有限性,故选C.
答案: C
3.从1,2,3,4四个数字中任取两个数求和,则和恰为偶数的概率是(  )
A. B.
C. D.
解析: 从1,2,3,4四个数字中任取两个数有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)六种方法,其中和为偶数的有(1,3),(2,4)两种,所以概率为.
答案: D
4.
一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为(  )
A. B.
C. D.
解析: 该树枝的树梢有6处,有2处能找到食物,所以获得食物的概率为=.
答案: B
二、填空题(每小题5分,共15分)
5.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木、木克土,土克水,水克火,火克金”,从这五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率是________.
解析: 五种抽出两种的抽法有10种,相克的种数有5种,故不相克的种数有5种,故五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率是.
答案: 
6.(2018·江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.
解析: 设2名男生分别为a,b,3名女生分别为A,B,C,则从中选出2人的情况有(a,b),(a,A),(a,B),(a,C),(b,A),(b,B),(b,C),(A,B),(A,C),(B,C),共10种,而都是女生的情况有(A,B),(A,C),(B,C),共3种,故所求概率为.
答案: 
7.一个三位自然数百位、十位、个位上的数字依次为a,b,c,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若a,b,c∈{1,2,3,4},且a,b,c互不相同,则这个三位数为“有缘数”的概率是________.
解析: 由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理,由1,2,4组成的三位自然数为6个,由1,3,4组成的三位自然数为6个,由2,3,4组成的三位自然数为6个,共有24个,由1,2,3或1,3,4组成的三位自然数为“有缘数”,共12个,所以三位数为“有缘数”的概率为=.
答案: 
三、解答题(每小题10分,共20分)
8.现共有6家企业参与某项工程的竞标,其中A企业来自辽宁省,B,C两家企业来自福建省,D,E,F三家企业来自河南省.此项工程需要两家企业联合施工,假设每家企业中标的概率相同.
(1)列举所有企业的中标情况;
(2)在中标的企业中,至少有一家来自福建省的概率是多少?
解析: (1)从这6家企业中选出2家的选法有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共有15种,以上就是中标情况.
(2)在中标的企业中,至少有一家来自福建省的选法有(A,B),(A,C),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种.
则“在中标的企业中,至少有一家来自福建省”的概率为=.
9.某商场举行抽奖活动,从装有编号0,1,2,3四个球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖.
(1)求中二等奖的概率;
(2)求未中奖的概率.
解析: (1)设“中二等奖”的事件为A,
所有基本事件包括(0,0),(0,1),…,(3,3)共16个,
事件A包含基本事件(1,3),(2,2),(3,1)共3个,
所以P(A)=.所以中二等奖概率为.
(2)设“未中奖”的事件为B,
所有基本事件包括(0,0),(0,1),…,(3,3)共16个,
“两个小球号码相加之和等于3”这一事件包括基本事件(0,3),(1,2),(2,1),(3,0)共4个,“两个小球号码相加之和等于5”这一事件包括基本事件(2,3),(3,2)共2个.
P(B)=1-P()=1-=.
所以未中奖的概率为.
课件36张PPT。
第三章概 率学案·自主学习互斥的基本事件的和教案·合作探究练案·高效测评
谢谢观看!