首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教新课标A版
必修4
第一章 三角函数
1.4 三角函数的图象与性质
高中数学人教A版必修4 1.4.1 正弦函数、余弦函数的图象(课件:34张PPT+课后作业)
文档属性
名称
高中数学人教A版必修4 1.4.1 正弦函数、余弦函数的图象(课件:34张PPT+课后作业)
格式
zip
文件大小
1.3MB
资源类型
教案
版本资源
人教新课标A版
科目
数学
更新时间
2020-03-30 20:20:25
点击下载
文档简介
(本栏目内容,在学生用书中以独立形式分册装订!)
一、选择题(每小题5分,共20分)
1.用“五点法”画y=sin x,x∈[-2π,0]的简图时,正确的五个点应为( )
A.(0,0),,(π,0),,(2π,0)
B.(0,0),,(-π,0),,(-2π,0)
C.(0,1),,(π,1),,(2π,-1)
D.(0,-1),,(-π,1),,(-2π,-1)
解析: 由五点法作图的概念可知B正确.
答案: B
2.点M在函数y=sin x的图象上,则m等于( )
A.0 B.1
C.-1 D.2
解析: 由题意-m=sin ,∴-m=1,∴m=-1.
答案: C
3.方程|x|=cos x在区间(-∞,+∞)内( )
A.没有根
B.有且仅有一个实根
C.有且仅有两个实根
D.有无穷多个实根
解析: 在同一坐标系内画出函数y=|x|和y=cos x的图象(图略),由图象可知,函数y=|x|的图象与y=cos x的图象有且只有两个公共点.
答案: C
4.函数y=cos x+|cos x|,x∈[0,2π]的大致图象为( )
解析: 由题意得y=
故选D.
答案: D
二、填空题(每小题5分,共15分)
5.函数y=1+sin x,x∈[0,2π]的图象与直线y=的交点个数是________.
解析: 在同一坐标系内画出y=1+sin x和y=的图象(如图所示),观察可得交点的个数为2.
答案: 2
6.下列函数中:①y=sin x-1;②y=|sin x|;③y=-cos x;④y=;⑤y=与函数y=sin x形状完全相同的有________.
解析: y=sin x-1是将y=sin x向下平移1个单位,没改变形状;y=-cos x=sin,故y=-cos x是将y=sin x向右平移个单位,没有改变形状,与y=sin x形状相同,∴①③完全相同,而②y=|sin x|,④y==|cos x|和⑤y==|sin x|与y=sin x的形状不相同.
答案: ①③
7.函数y= 的定义域是________.
解析: 要使函数有意义,只需2cos x-≥0,即cos x≥.由余弦函数图象知(如图),
所求定义域为,(k∈Z).
答案: ,(k∈Z)
三、解答题(每小题10分,共20分)
8.用“五点法”作函数y=2sin x(x∈[0,2π])的简图.
解析: (1)列表:
x
0
π
2π
2sin x
0
2
0
-2
0
(2)描点作图,如下:
9.根据y=cos x的图象解不等式:-≤cos x≤,x∈[0,2π].
解析: 函数y=cos x,x∈[0,2π]的图象如图所示:
根据图象可得不等式的解集为:
.
??☆☆☆
10.用“五点法”作出函数y=1-2sin x,x∈[-π,π]的简图,并回答下列问题:
(1)观察函数图象,写出满足下列条件的x的区间.①y>1;②y<1.
(2)若直线y=a与y=1-2sin x,x∈[-π,π]有两个交点,求a的取值范围.
解析: 列表如下:
x
-π
-
0
π
sin x
0
-1
0
1
0
1-2sin x
1
3
1
-1
1
描点连线得:
(1)由图象可知,图象在y=1上方部分时y>1,在y=1下方部分时y<1,
所以①当x∈(-π,0)时,y>1;②当x∈(0,π)时,y<1.
(2)如图所示,当直线y=a与y=1-2sin x有两个交点时,1
课件34张PPT。
第一章 三角函数1.4 三角函数的图象与性质
1.4.1 正弦函数、余弦函数的图象抓基础·新知探究(0,0)(π,0)(0,1)(π,-1)(2π,1)(2π,0)[自主学习]
1.下列对函数y=cos x的图象描述错误的是( )
A.在[0,2π]和[4π,6π]上的图象形状相同,只是位置不同
B.介于直线y=1与直线y=-1之间
C.关于x轴对称
D.与y轴只有一个交点
解析: 观察余弦函数的图象知:
y=cos x关于y轴对称,故C错误.
答案: C解析: 函数y=-sin x的图象与函数y=sin x的图象关于x轴对称,故选D.
答案: D解析: 由y=sin x在[0,2π]的图象可得.
答案: B通技法·互动讲练答案: (1)C (2)D答案: (1)D (2)②④◎ 变式训练
2.画出函数y=3+2cos x,x∈[0,2π]的简图.提知能·高效测评
谢谢观看!
点击下载
同课章节目录
第一章 三角函数
1.1 任意角和弧度制
1.2 任意的三角函数
1.3 三角函数的诱导公式
1.4 三角函数的图象与性质
1.5 函数y=Asin(ωx+ψ)
1.6 三角函数模型的简单应用
第二章 平面向量
2.1 平面向量的实际背景及基本概念
2.2 平面向量的线性运算
2.3 平面向量的基本定理及坐标表示
2.4 平面向量的数量积
2.5 平面向量应用举例
第三章 三角恒等变换
3.1 两角和与差的正弦、余弦和正切公式
3.2 简单的三角恒等变换
点击下载
VIP下载