21世纪教育网 –全国领先的中小学教育资源及组卷应用平台
2020年八年级数学下册(华东师大版)
第17章达标检测卷
一、选择题(每题3分,共30分)
1. 小军用50元钱买单价为8元的笔记本,他剩余的钱数Q(元)与他买这种笔记本的本数x之间的关系式为Q=50-8x,则下列说法正确的是( )
A. Q和x是变量 B. Q是自变量 C. 50和x是常量 D. x是Q的函数
2. 函数y=+x-2的自变量x的取值范围是( )
A. x≥2 B. x>2 C. x≠2 D. x≤2
3. 若函数y=的图象在其所在象限内y的值随x值的增大而增大,则m的取值范围是( )
A. m>-2 B. m<-2 C. m>2 D. m<2
4. 设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( )
A. 2 B. -2 C. 4 D. -4
5.如图,在平面直角坐标系中,函数和的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是( )
A. . B. . C. . D. .
6.如图,直线l和双曲线(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连结OA、OB、OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则 ( )
A. S1<S2<S3. B. S1>S2>S3 . C. S1=S2>S3. D. S1=S2<S3.
7.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为( )
A. x>﹣2 B. x<﹣2 C. x>4 D. x<4
8.(2019秋●兰州期末)已知关于x的函数y=k(x+1)和y=﹣(k≠0)它们在同一坐标系中的大致图象是( )
A. B. C. D.
9.(2019●阜新)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为( )
A.3 B.2 C. D.1
10.(2019春●宁津县期末)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是( )
A.①②③ B.①②④ C.①③④ D.①②③④
二、填空题(每题3分,共18分)
11. 点A(2,a)关于x轴的对称点是B(b,-3),则ab=________.
12. 已知直线y=kx+b,若k+b=-5,kb=6,那么该直线不经过第______________象限.
13. 把直线y=-x-1沿x轴向右平移2个单位长度,所得直线对应的函数表达式为________.
14. 反比例函数y1=与一次函数y2=-x+b的图象交于点A(2,3)和点B(m,2).由图象可知,对于同一个x,若y1>y2,则x的取值范围是________.
15.如图,A,B两点在反比例函数y=的图象上,C,D两点在反比例函数y=的图象上,AC⊥y轴于点E,BD⊥y轴于点F,AC=2,BD=1,EF=3,则k1﹣k2的值是_______.
16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点Bn的坐标为_____.(n为正整数)
三、解答题(本题包括3个小题,共32分)
17.(2019秋●东台市期末)(10分)已知y﹣2与x成正比,且当x=1时,y=﹣6
(1)求y与x之间的函数关系式;
(2)若点(a,2)在这个函数图象上,求a.
18.(2019秋●港南区期末)(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣2,﹣5)C(5,n),交y轴于点B,交x轴于点D.
(1)求反比例函数y=和一次函数y=kx+b的表达式;
(2)连接OA,OC.求△AOC的面积.
20.(12分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示
(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;
(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;
(3)求两人相遇的时间.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://www.21cnjy.com/" 版权所有@21世纪教育网(www.21cnjy.com)
21世纪教育网 –全国领先的中小学教育资源及组卷应用平台
2020年八年级数学下册(华东师大版)
第17章达标检测卷
一、选择题(每题3分,共30分)
1. 小军用50元钱买单价为8元的笔记本,他剩余的钱数Q(元)与他买这种笔记本的本数x之间的关系式为Q=50-8x,则下列说法正确的是( )
A. Q和x是变量 B. Q是自变量 C. 50和x是常量 D. x是Q的函数
【答案】A
【解析】根据函数、和变量和常量的概念可得:
A选项:Q和x是变量是正确的;
B选项:Q是因变量,故是错误的;
C选项:50是常量,x是变量,故是错误的;
D选项:Q是x的函数,故是错误的;
故选A.
2. 函数y=+x-2的自变量x的取值范围是( )
A. x≥2 B. x>2 C. x≠2 D. x≤2
【答案】B
【解析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0可得:
x-2≥0且x-2≠0,
解得:x>2.
故选B.
【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
3. 若函数y=的图象在其所在象限内y的值随x值的增大而增大,则m的取值范围是( )
A. m>-2 B. m<-2 C. m>2 D. m<2
【答案】B
【解析】根据反比例函数的性质,可得m+2<0,从而得出m的取值范围:m<-2.故选B.
4. 设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( )
A. 2 B. -2 C. 4 D. -4
【答案】B
【解析】把x=m,y=4代入y=mx中,
可得:m=±2,
因为y的值随x值的增大而减小,
所以m=-2,
故选B.
5.如图,在平面直角坐标系中,函数和的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是( )
A. . B. . C. . D. .
【答案】B
【解析】
【分析】
由图可知:两个一次函数的交点坐标为(-3,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
【详解】解:因为函数图象交点坐标为两函数解析式组成的方程组的解,
因此方程组的解是.
故选B.
【点睛】本题考查一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
6.如图,直线l和双曲线(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连结OA、OB、OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则 ( )
A. S1<S2<S3. B. S1>S2>S3 . C. S1=S2>S3. D. S1=S2<S3.
【答案】D
【解析】
根据反比例函数k的几何意义可得S1= S2<S3,故选D.
点睛:
本题主要考查了反比例函数 中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.
7.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为( )
A. x>﹣2 B. x<﹣2 C. x>4 D. x<4
【答案】A
【解析】
【分析】求不等式kx+b>4的解集就是求函数值大于4时,自变量的取值范围,观察图象即可得.
【详解】由图象可以看出,直线y=4上方函数图象所对应自变量的取值为x>-2,
∴不等式kx+b>4的解集是x>-2,
故选A.
【点睛】本题考查了一次函数与一元一次不等式;观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.
8.(2019秋●兰州期末)已知关于x的函数y=k(x+1)和y=﹣(k≠0)它们在同一坐标系中的大致图象是( )
A. B. C. D.
【答案】A
【解析】解:当k>0时,反比例函数的系数﹣k<0,反比例函数过二、四象限,一次函数过一、二、三象限,原题没有满足的图形;
当k<0时,反比例函数的系数﹣k>0,所以反比例函数过一、三象限,一次函数过二、三、四象限.
故选:A.
9.(2019●阜新)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为( )
A.3 B.2 C. D.1
【答案】C
【解析】解:连结OA,如图,
∵AB⊥x轴,
∴OC∥AB,
∴S△OAB=S△CAB,
而S△OAB=|k|=,
∴S△CAB=,
故选:C.
10.(2019春●宁津县期末)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是( )
A.①②③ B.①②④ C.①③④ D.①②③④
【答案】A
【解析】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;
由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;
当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;
乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.
故选:A.
二、填空题(每题3分,共18分)
11. 点A(2,a)关于x轴的对称点是B(b,-3),则ab=________.
【答案】6
【解析】∵点A(2,a)关于x轴的对称点是B(b,-3),
∴a=3,b=2,
∴ab=6.
故答案是:6.
12. 已知直线y=kx+b,若k+b=-5,kb=6,那么该直线不经过第______________象限.
【答案】一
【解析】试题分析:首先根据k+b=-5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限,进而求解即可.
试题解析:∵k+b=-5,kb=6,
∴k<0,b<0,
∴直线y=kx+b经过二、三、四象限,即不经过第一象限.
考点:一次函数图象与系数的关系.
13. 把直线y=-x-1沿x轴向右平移2个单位长度,所得直线对应的函数表达式为________.
【答案】y=-x+1
【解析】把直线y=-x-1沿x轴向右平移2个单位,所得直线的函数解析式为y=-(x-2)-1,即y=-x+1.
故答案是:y=-x+1.
14. 反比例函数y1=与一次函数y2=-x+b的图象交于点A(2,3)和点B(m,2).由图象可知,对于同一个x,若y1>y2,则x的取值范围是________.
【答案】0<x<2或x>3
【解析】由于A,B为交点,则点A,B都满足这两个函数解析式,
把点A代入反比例函数得k=6,
把点A代入一次函数解析式中,得:b=5.
把点B代入上述函数解析中的任何一个,得:m=3,则B(3,2).
在同一个坐标系中画出这两个函数的解析式:如下图,函数值大的,则表现在图象上就是在上方,
由此图,可得:0<x<2或x>3.
故答案是:0<x<2或x>3.
15.如图,A,B两点在反比例函数y=的图象上,C,D两点在反比例函数y=的图象上,AC⊥y轴于点E,BD⊥y轴于点F,AC=2,BD=1,EF=3,则k1﹣k2的值是_______.
【答案】2
【解析】
【分析】
设点A的坐标为(a,b),结合AC=2,BD=1,EF=3可把点B、C、D的坐标及k1和k2用含a,b的式子表达出来,利用已知条件列出等式即可求得k1-k2的值.
【详解】设点A的坐标为,则由题意可得点C的坐标为,点B的坐标为,点D的坐标为,
∴,BD=,
∵BD=1,
∴,解得:,
∴.
故答案为2.
【点睛】熟悉“反比例函数的图象和性质”及“平行于坐标轴的直线上两点间的距离与它们坐标间的关系”是正确解答本题的关键.
16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点Bn的坐标为_____.(n为正整数)
【答案】(2n﹣1,2n﹣1)
【解析】
【分析】
根据直线解析式先求出OA1=1,再求出第一个正方形的边长为2,第三个正方形的边长为22,得出规律,即可求出第n个正方形的边长,从而求得点Bn的坐标.
【详解】∵直线y=x+1,当x=0时,y=1,当y=0时,x=-1,
∴OA1=1,
∴B1(1,1),
∵OA1=1,OD=1,
∴∠ODA1=45°,
∴∠A2A1B1=45°,
∴A2B1=A1B1=1,
∴A2C1=2=21,
∴B2(3,2),
同理得:A3C2=4=22,…,
∴B3(23-1,23-1),
∴Bn(2n?1,2n?1),
故答案为Bn(2n?1,2n?1).
【点睛】本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.
三、解答题(本题包括3个小题,共32分)
17.(2019秋●东台市期末)(10分)已知y﹣2与x成正比,且当x=1时,y=﹣6
(1)求y与x之间的函数关系式;
(2)若点(a,2)在这个函数图象上,求a.
【解析】解:(1)设 y﹣2=kx
∵当x=1时,y=﹣6,
∴k=﹣6﹣2,
∴k=﹣8,
∴y与x之间的函数关系式为y﹣2=﹣8x,即y=﹣8x+2.
(2)∵点(a,2)在这个函数图象上,
∴﹣8a+2=2,
∴a=0.
18.(2019秋●港南区期末)(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣2,﹣5)C(5,n),交y轴于点B,交x轴于点D.
(1)求反比例函数y=和一次函数y=kx+b的表达式;
(2)连接OA,OC.求△AOC的面积.
【解析】解:(1)把A(﹣2,﹣5)代入y=得:m=10,
则反比例函数的解析式是:y=,
把x=5代入,得:y=2,
则C的坐标是(5,2).
根据题意得:
解得:
则一次函数的解析式是:y=x﹣3.
(2)在y=x﹣3中,令x=0,解得:y=﹣3.
则B的坐标是(0,﹣3).
∴OB=3,
∵点A的横坐标是﹣2,C的横坐标是5.
∴S△AOC=S△AOB+S△BOC=OB×2×5+×OB×5=×3×7=.
20.(12分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示
(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;
(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;
(3)求两人相遇的时间.
【答案】(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x范围为0≤x≤;(3)两人相遇时间为第8分钟.
【解析】
【分析】
(1)认真分析图象得到路程与速度数据;
(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;
(3)两人相遇实际上是函数图象求交点.
【详解】解:(1)结合题意和图象可知,线段CD为小东路程与时间函数图象,折现O﹣A﹣B为小玲路程与时间图象
则家与图书馆之间路程为4000m,小玲步行速度为(4000-2000)÷(30-10)=100m/s
(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,
∴他离家的路程y=4000﹣300x,
自变量x的范围为0≤x≤,
(3)由图象可知,两人相遇是在小玲改变速度之前,
∴4000﹣300x=200x
解得x=8
∴两人相遇时间为第8分钟.
故答案为(1)4000,100;(2)y=4000﹣300x,0≤x≤;(3)第8分钟.
【点睛】本题考查了一次函数的应用,解决本题的关键是能从函数的图象中获取相关信息.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://www.21cnjy.com/" 版权所有@21世纪教育网(www.21cnjy.com)