18.2.3 正方形
一、单选题
1.矩形、菱形、正方形都具有的性质是( )
A.四条边都相等 B.对角线相等 C.对边平行且相等 D.对角线互相垂直
2.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为( )
A.90° B.105° C.120° D.135°
3.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为(??? )
A. B. C. D.3
4.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为( )
A. B.3 C. D.5
5.下列命题中正确的是( )
A.有一组邻边相等的四边形是菱形
B.有一个角是直角的平行四边形是矩形
C.对角线垂直的平行四边形是正方形
D.一组对边平行的四边形是平行四边形
6.如图,E、F为菱形ABCD对角线上的两点,∠ADE=∠CDF,要判定四边形BFDE是正方形,需添加的条件是( )
A.AE=CF B.OE=OF C.∠EBD=45° D.∠DEF=∠BEF
7.下列叙述,错误的是( )
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直平分的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线相等的四边形是矩形
8.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为( )
A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)
9.如图,等边与正方形重叠,其中,两点分别在,上,且,若,,则的面积为( )
A.1 B.
C.2 D.
10.如图,正方形和正方形中,点在上,,,是的中点,那么的长是( )
A.2 B. C. D.
二、填空题
11.若正方形的面积是9,则它的对角线长是_____.
12.如图,正方形ABCD的边长为2,点E、F在BD上,且DF=BE=1,四边形AECF的面积为______.
13.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是_____.
14.正方形ABCD中,点E在边CD上,点P在线段AE上,且到A、B、D三个顶点的距离分别为、2、6,则四边形BCDP的面积为_____.
三、解答题
15.如图,正方形ABCD内的△BEC为正三角形,求∠DEA的度数.
16.如图,正方形纸片的边长为6,点、分别在边、上,将、分别沿、折叠,点、恰好都在点处,已知,求的长.
17.已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.
(1)求证:四边形FBGH是菱形;
(2)求证:四边形ABCH是正方形.
18.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.
答案
1.C
2.D
3.B
4.B
5.B
6.C
7.D
8. A.
9.C
10.D
11.3
12.4.
13.①③④.
14.43.
15.解:∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°.
∵△BEC是正三角形,
∴BE=BC=EC,∠EBC=∠BEC=∠ECB=60°.
∴BA=BE(即△BAE是等腰三角形),
∠ABE=∠ABC-∠EBC= 90°-60°=30°,
∴∠BAE=∠BEA==75°,
∴∠EAD=∠BAD-∠BAE=90°-75°=15°.
同理∠EDA=15°,
∴∠DEA=180°-∠EAD-∠EDA=180°-15°-15°=150°.
16.解:设,由图形折叠可得,,,
在直角中,
∴,
∴,
解得,
∴.
17.(1)∵点F、G是边AC的三等分点,
∴AF=FG=GC.
又∵点D是边AB的中点,
∴DH∥BG.
同理:EH∥BF.
∴四边形FBGH是平行四边形,
连结BH,交AC于点O,
∴OF=OG,
∴AO=CO,
∵AB=BC,
∴BH⊥FG,
∴四边形FBGH是菱形;
(2)∵四边形FBGH是平行四边形,
∴BO=HO,FO=GO.
又∵AF=FG=GC,
∴AF+FO=GC+GO,即:AO=CO.
∴四边形ABCH是平行四边形.
∵AC⊥BH,AB=BC,
∴四边形ABCH是正方形.
18.(1)如图1,在正方形ABCD中,
∵BC=CD,∠B=∠CDF,BE=DF,
∴△CBE≌△CDF,
∴CE=CF;
(2)如图2,延长AD至F,使DF=BE,连接CF,
由(1)知△CBE≌△CDF,
∴∠BCE=∠DCF.
∴∠BCE+∠ECD=∠DCF+∠ECD
即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°,
∵CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG,
∴GE=GF,
∴GE=DF+GD=BE+GD;
(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.
AE=AB-BE=12-4=8,
设DF=x,则AD=12-x,
根据(2)可得:DE=BE+DF=4+x,
在直角△ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,
解得:x=6.
则DE=4+6=10