第七节:动能定理
知识讲解:
一、动能:物体由于运动而具有的能量叫做动能。
表达式: 单位:
由公式可得:1=1 = 1
动能的“三个性质”
(1)动能的标矢性:动能是标量,不会为负值。
(2)动能的瞬时性:动能是状态量,对应物体在某一时刻的运动状态。速度变化时,动能不一定变化,但动能变化时,速度一定变化。
(3)动能的相对性:由于瞬时速度与参考系有关,所以E也与参考系有关。在一般情况下,如无特殊说明,则取大地为参考系。
二、动能定理:力在一个过程中对物题所做的功,等于物体在这个过程中动能的变化
表达式: = -
其中:表示合外力做的功。
动能定理公式中“="号的意义
1.表示等式两边的单位相同,都是焦耳。
2.表示数量相等,可以透过计算物体动能的变化求合力做的功,也可
以通过计算合力做的功求动能的变化
3.表示因果关系,合外力做功是物体动能支化的前提条件。
物理意义:动能定理实质上说明了功和能之间的密切关系,即做功的过程是能量转化的过程。
4适用范围
动能定理虽然可根据牛顿运动定律和运动学公式推出,但定理本身的
意义及应用却具有广泛性和普遍性
(1)动能定理既适用于恒力做功,也适用于变力做功
(2)动能定理既适用于直线运动。也适用于曲线运动
对动能定理的理解
(1)动能定理中的位移、速度都必须相对同一参考系,一般以地面为参考系。
(2)外力对物体所做的功是指物体所受的一切外力对它做的总功。
(3)动能定理表达式是标量式,必须明确功虽然是标量、但有正负,求总功时,总功等于所有力做功的代数和
(4)动能定理定量揭示了力对物体所做的总功与物林动能变化的关系,动能定理表达式中为合力做的功,若合力做正功,物体的动能就增加,若合力做负功,物体的动能就减少
(5)从 可以看出,合外力做的功与物体运动的全过程无关
三、哪些题型用动能定理解题:
1.题目中涉及的物理量有:这些物理量的力学问题时,优先考虑使用动能定理。
2.涉及变力做功情况和曲线运动等问题,利用牛顿运动定律和恒力做功公式将无法求解,用动能定理求解相当简捷。
四、应用动能定理解题的基本思路
(1)确定研究对象,明确它的运动过程。
(2)分析研究对象的受力情况和各个力做功的情况:受哪些力,各个力是否做功,做正功还是负功,然后求各个力做功的代数和(特别注意,这里外力做的功包括重力所做的功在内)。
(3)明确初始状态和末状态的动能,可分段,也可对整个过程进行求解。
(4)列出动能定理W合= -的方程求解。
选择题:
1.下列关于运动物体所受的合外力、合外力做功和动能变化的关系,正确的是( A )
A.如果物体所受的合外力为零,那么,合外力对物体做的功一定为零
B.如果合外力对物体所做的功为零,则合外力一定为零
C.物体在合外力作用下作变速运动,动能一定变化
D.物体的动能不变,所受的合外力必定为零
2.(多选)关于做功和物体动能变化的关系,不正确的是( ABD )
A.只要动力对物体做功,物体的动能就增加
B.只要物体克服阻力做功,它的动能就减少
C.外力对物体做功的代数和等于物体的末动能与初动能之差
D.动力和阻力都对物体做功,物体的动能一定变化
3.(多选)一质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度2 m/s,则下列说法正确的是( ACD )
A.手对物体做功12J B.合外力对物体做功12J
C.合外力对物体做功2J D.物体克服重力做功10 J
4.一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为( A )
A. 0 B. 8J C. 16J D. 32J
5.a、b、c三球自同一高度以相同速率抛出,a球竖直上抛,b球水平抛出,c球竖直下抛.设三球落地时的速率分别为Va、Vb、Vc(不计空气阻力),则(D )
A.Va>Vb>Vc B.Va=Vb>Vc
C.Va 6.如图所示,质量为m的物体,以水平速度v0离开桌面,若以桌面为零势能面,不计空气阻力,则当它经过离地高度为h的A点时,所具有的机械能是( D )
A、 B、
C、 D、
7.(多选)质量为m的滑块沿着高为h、长为L的粗糙斜面恰能匀速下滑,在滑块从斜面顶端下滑到底端的过程中( AD )
A、重力对滑块所做的功等于mgh
B、滑块克服阻力所做的功为零
C、合力对滑块所做的功为mgh
D、滑块的重力势能一定减少mgh
8.(多选)如图,质量为m的物体从地面上方H高处无初速释放,落在地面后出现一个深度为h的坑,如图所示,在此过程中( B D )
A、重力对物体做功为mgH
B、重力对物体做功为mg(H+h)
C、外力对物体做的总功为 mgH
D、地面对物体的平均阻力为mg(H+h)/h
9.(多选)质量为1 kg的物体,在空中由静止开始自由落下,经5 s 落地,以下说法中正确的是(g 取10 m/s2)( ACD )
A、前2 s内小球的动能增量为200 J
B、第2 s内重力做功为250 J
C、第2 s末重力做功的瞬时功率为200 W
D、5 s内重力做功的平均功率为250W
10.光滑水平面上,静置一总质量为M的小车,车板侧面固定一根弹簧,水平车板光滑.另有质量为m的小球把弹簧压缩后,再用细线拴住弹簧,烧断细线后小球被弹出,离开车时相对车的速度为v,则小车获得动能是( D )
11.物体在水平恒力作用下,在水平面上由静止开始运动当位移s时撤去F,物体继续前进3s后停止运动,若路面情况相同,则物体的摩擦力和最大动能是( D )
12.如图,一质量为m的质点在半径为R的半球形容器中(容器固定),由静止开始自边缘上的A点滑下,到达最低点B时,它对容器的正压力为N。重力加速度为g,则质点自A滑到B的过程中,摩擦力对其所做的功为( A )
A.
B.
C.
D.
计算题
13.一小球从高出地面H米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对球的平均阻力是其重力的多少倍。
14.如图所示,斜面足够长,其倾角为α,质量为m的滑块,距挡板P为S0,以初速度V0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?
15.如图所示,质量为m的物体A,从弧形面的底端以初速v0往上滑行,达到某一高度后,又循原路返回,且继续沿水平面滑行至P点而停止,则整个过程摩擦力对物体所做的功。
16.粗糙的1/4圆弧的半径为0.45m,有一质量为0.2kg的物体自最高点A从静止开始下滑到圆弧最低点B时,然后沿水平面前进0.4m到达C点停止. 设物体与轨道间的动摩擦因数为0.5 (g = 10m/s2),求:
(1)物体到达B点时的速度大小.
(2)物体在圆弧轨道上克服摩擦力所做的功.
17.质量为m的物体以速度v竖直向上抛出,物体落回地面时,速度大小为3/4v,设物体在运动中所受空气阻力大小不变,求:
(1)物体运动中所受阻力大小;
(2)若碰撞中无机械能损失,求物体运动的总路程。
18.如图所示,一水平传送带以4m/s的速度匀速运动,现把质量为1kg的小物块(可视为质点)无初速地轻放在传送带的左端A处,经过一段时间,小物块到达传送带的右端B处。A、B间距离为6m,小物块与传送带间的动摩擦因数为0.2,重力加速度g=10 m/s2。
(1)求小物块从A运动到B所用的时间;
(2)物块从A运动到B的过程中,求摩擦力对物块做的功。
V0
S0
α
P