第三章 §2 2.1 古典概型的特征和概率计算公式
课时跟踪检测
一、选择题
1.下列不属于古典概型的性质的是( )
A.所有基本事件的个数是有限个
B.每个基本事件发生的可能性相等
C.任两个基本事件不能同时发生
D.可能有2个基本事件发生的可能性不相等
答案:D
2.一个袋子中装有编号分别为1,2,3,4的4个小球,现有放回地摸球,规定每次只能摸一个球,若第一次摸到的球的编号为x,第二次摸到的球的编号为y,构成数对(x,y),则所有数对(x,y)中满足xy=4的概率为( )
A. B. C. D.
解析:由题意可知两次摸球得到的所有数对(x,y)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个,其中满足xy=4的数对有(1,4),(2,2),(4,1),共3个.故所求事件的概率为.
答案:A
3.已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为( )
A.0.4 B.0.6
C.0.8 D.1
解析:设两件次品编号为1,2;3件合格品编号为3,4,5,所有基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,其中恰有一件为次品的有(1,3),(1,4),(1,5),(2,3),(2,4,)(2,5),共6个.
∴恰有一件次品的概率为=0.6.
答案:B
4.(2017·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )
A. B.
C. D.
解析:依题意,记两次取得卡片上的数字依次为a,b,则一共有25个不同的数组(a,b),其中满足a>b的数组共有10个,分别为(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),因此所求的概率为=.
答案:D
5.(2019·全国卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )
A. B.
C. D.
解析:设5只兔子中测量过某项指标的3只为a1,a2,a3,未测量过这项指标的2只为b1,b2,则从5只兔子中随机取出3只的所有可能情况为(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a1,b1,b2),(a2,a3,b1),(a2,a3,b2),(a2,b1,b2),(a3,b1,b2),共10种可能.其中恰有2只测量过该指标的情况为(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),共6种可能.
故恰有2只测量过该指标的概率为=.故选B.
答案:B
6.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为( )
A. B.
C. D.
解析:从五种不同属性的物质中随机抽取两种,出现的情况有:(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木,土),(水,火),(水,土),(火,土),共10种,其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也有5种,所以抽取的两种物质不相克的概率为.
答案:C
二、填空题
7.第1,2,5,7路公共汽车都在一个车站停靠,有一位乘客等候着1路或5路公共汽车,假定各路公共汽车首先到站的可能性相等,那么首先到站的正好为这位乘客所要乘的车的概率是________.
解析:因为4种公共汽车首先到站的车共有4个结果,且每种结果出现的可能性相等,所以“首先到站的车正好是这位乘客所要乘的车”的结果有2个,所以P==.
答案:
8.盒子里共有大小相同的3只白球,1只黑球.若从中随机摸出两只,则它们颜色不同的情况概率是________.
解析:设3只白球为A,B,C,1只黑球为d,
则从中随机摸出两只球的情形有:
AB,AC,Ad,BC,Bd,Cd共6种,其中两只球颜色不同的情况有3种,故所求概率为.
答案:
9.从分别写有A,B,C,D,E的5张卡片中,任取2张,这2张上的字母恰好按字母的顺序相邻的概率为________.
解析:从A、B、C、D、E中任取2张共有:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,10种情况,而字母的顺序相邻的情况有AB,BC,CD,DE,4种情况,∴概率为=.
答案:
三、解答题
10.袋中有大小、形状相同的红、黑球各一个,现依次有放回地随机摸取3次,每次摸取一个球.
(1)试问:一共有多少种不同的结果?请列出所有可能的结果;
(2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.
解:(1)一共有8种不同的结果,列举如下:
(红,红,红),(红,红,黑),(红,黑,红),(红,黑,黑),(黑,红,红),(黑,红,黑),(黑,黑,红),(黑,黑,黑).
(2)记“3次摸球所得总分为5”为事件A.
事件A包含的基本事件为(红,红,黑),(红,黑,红),(黑,红,红),事件A包含的基本事件数为3.
由(1)可知,基本事件总数为8,
所以事件A的概率为P(A)=.
11.随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如下图.
现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高176 cm的同学被抽中的概率.
解:设身高为176 cm的同学被抽到的事件为A,从乙班10名同学中抽取两名身高不低于173 cm的同学有:(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173),共10个基本事件,而事件A含有4个基本事件:(181,176),(179,176),(178,176),(176,173).
∴P(A)==.
12.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.
(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
解:(1)甲校2男教师分别用A、B表示,女教师用C表示;乙校男教师用D表示,2女教师分别用E、F表示.
从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种.
从中选出的2名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F),共4种.
选出的2名教师性别相同的概率为P=.
(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.
从中选出的2名教师来自同一学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共6种.选出的2名教师来自同一学校的概率为P==.
13.(2019·天津卷)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.
(1)应从老、中、青员工中分别抽取多少人?
(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表
示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工
项目
A
B
C
D
E
F
子女教育
○
○
×
○
×
○
继续教育
×
×
○
×
○
○
大病医疗
×
×
×
○
×
×
住房贷款利息
○
○
×
×
○
○
住房租金
×
×
○
×
×
×
赡养老人
○
○
×
×
×
○
①试用所给字母列举出所有可能的抽取结果;
②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.
解:(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.
(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.
②由表格知,符合题意的所有可能结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.
所以,事件M发生的概率P(M)=.
课件49张PPT。§2 古典概型
2.1 古典概型的特征和概率
计算公式自主学习 梳理知识课前基础梳理典例精析 规律总结课堂互动探究即学即练 稳操胜券基础知识达标word部分: 请做: 课时跟踪检测
层级训练 提能过关点此进入该word板块