第二章 2.1 空间点、直线、平面之间的位置关系
2.1.1 平 面
课时分层训练
1.下列说法中正确的是( )
A.三点确定一个平面
B.四边形一定是平面图形
C.梯形一定是平面图形
D.两个不同平面α和β有不在同一条直线上的三个公共点
解析:选C 不共线的三点确定一个平面,故A不正确;四边形有时指空间四边形,故B不正确;梯形的上底和下底平行,可以确定一个平面,故C正确;两个平面如果相交,一定有一条交线,所有这两个平面的公共点都在这条交线上,故D不正确.故选C.
2.给出以下四个命题:
①不共面的四点中,其中任意三点不共线;
②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;
③若直线a,b共面,直线a,c共面,则直线b,c共面;
④依次首尾相接的四条线段必共面.
其中正确命题的个数是( )
A.0 B.1
C.2 D.3
解析:选B ①假设其中有三点共线,则该直线和直线外的另一点确定一个平面,这与四点不共面矛盾,故其中任意三点不共线,所以①正确;②如图,两个相交平面有三个公共点A,B,C,但A,B,C,D,E不共面;③显然不正确;④不正确,因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形.
3.在空间四边形ABCD中,在AB,BC,CD,DA上分别取E,F,G,H四点,如果GH,EF交于一点P,则( )
A.P一定在直线BD上
B.P一定在直线AC上
C.P在直线AC或BD上
D.P既不在直线BD上,也不在AC上
解析:选B 由题意知GH?平面ADC.因为GH,EF交于一点P,所以P∈平面ADC.同理,P∈平面ABC.因为平面ABC∩平面ADC=AC,由公理3可知点P一定在直线AC上.
4.用一个平面截正方体所得的截面图形不可能是( )
A.六边形 B.五边形
C.菱形 D.直角三角形
解析:选D 可用排除法,正方体的截面图形可能是六边形、五边形、菱形,故选D.
5.下列各图均是正六棱柱,P,Q,R,S分别是所在棱的中点,这四个点不共面的图形是( )
解析:选D 在选项A、B、C中,由棱柱、正六边形、中位线的性质,知均有PS∥QR,即在此三个图形中P,Q,R,S共面,故选D.
6.用符号表示“点A在直线l上,l在平面α外”为________.
答案:A∈l,l?α
7.如图,看图填空:
(1)平面AB1∩平面A1C1=________;
(2)平面A1C1CA∩平面AC=________.
答案:A1B1 AC
8.已知空间四点中无任何三点共线,那么这四点可以确定平面的个数是________.
解析:其中三个点可确定唯一的平面,当第四个点在此平面内时,可确定1个平面,当第四个点不在此平面内时,则可确定4个平面.
答案:1或4
9.如图,在正方体ABCD-A1B1C1D1中,判断下列命题是否正确,并说明理由.
(1)由点A,O,C可以确定一个平面;
(2)由点A,C1,B1确定的平面为平面ADC1B1.
解:(1)不正确.因为点A,O,C在同一条直线上,故不能确定一个平面.
(2)正确.因为点A,B1,C1不共线,所以可确定一个平面.又因为AD∥B1C1,所以点D∈平面AB1C1.所以由点A,C1,B1确定的平面为平面ADC1B1.
10.按照给出的要求,完成图中两个相交平面的作图,图中所给线段AB分别是两个平面的交线.
解:以AB为其中一边,分别画出表示平面的平行四边形.如图所示.
1.如果直线a?平面α,直线b?平面α,M∈a,N∈b,M∈l,N∈l,则( )
A.l?α B.l?/ α
C.l∩α=M D.l∩α=N
解析:选A ∵M∈a,a?α,∴M∈α,
同理,N∈α,又M∈l,N∈l,故l?α.
2.下列命题正确的是( )
A.一条直线和一点确定一个平面
B.两条相交直线确定一个平面
C.四点确定一个平面
D.三条平行直线确定一个平面
解析:选B 根据一条直线和直线外的一点确定一个平面,知A不正确;B显然正确;C中四点不一定共面,故C不正确;三条平行直线可以确定一个平面或三个平面,故D不正确.故选B.
3.下列命题中,正确的是( )
A.经过正方体任意两条面对角线,有且只有一个平面
B.经过正方体任意两条体对角线,有且只有一个平面
C.经过正方体任意两条棱,有且只有一个平面
D.经过正方体任意一条体对角线与任意一条面对角线,有且只有一个平面
解析:选B 因为正方体的四条体对角线相交于同一点(正方体的中心),因此经过正方体任意两条体对角线,有且只有一个平面,故选B.
4.在正方体ABCD-A1B1C1D1中,M,N分别是棱DD1和BB1上的点,MD=DD1,NB=BB1,那么正方体中过点M,N,C1的截面图形是( )
A.三角形 B.四边形
C.五边形 D.六边形
解析:选C 在正方体ABCD-A1B1C1D1中,M,N分别是棱DD1和BB1上的点,MD=DD1,NB=BB1.如图,延长C1M交CD于点P,延长C1N交CB于点Q,连接PQ交AD于点E,AB于点F,连接NF,ME,则正方体的过点M,N,C1的截面图形是五边形.故选C.
5.已知α,β是不同的平面,l,m,n是不同的直线,P为空间中一点.若α∩β=l,m?α,n?β,m∩n=P,则点P与直线l的位置关系用符号表示为________.
解析:因为m?α,n?β,m∩n=P,所以P∈α且P∈β.
又α∩β=l,所以点P在直线l上,所以P∈l.
答案:P∈l
6.在长方体ABCD-A1B1C1D1的所有棱中,既与AB共面,又与CC1共面的棱有________条.
解析:作图并观察可知既与AB共面,又与CC1共面的棱有CD,BC,BB1,AA1,C1D1,共5条.
答案:5
7.若直线l与平面α相交于点O,A,B∈l,C,D∈α,且AC∥BD,则O,C,D三点的位置关系是________.
解析:∵AC∥BD,
∴AC与BD确定一个平面,记作平面β,则α∩β=直线CD.
∵l∩α=O,∴O∈α.
又∵O∈AB?β,
∴O∈直线CD,
∴O,C,D三点共线.
答案:共线
8.如图所示,AB∩α=P,CD∩α=P,A,D与B,C分别在平面α的两侧,AC∩α=Q,BD∩α=R.
求证:P,Q,R三点共线.
证明:∵AB∩α=P,CD∩α=P,
∴AB∩CD=P.
∴AB,CD可确定一个平面,设为β.
∵A∈AB,C∈CD,B∈AB,D∈CD,
∴A∈β,C∈β,B∈β,D∈β.
∴AC?β,BD?β,平面α,β相交.
∵AB∩α=P,AC∩α=Q,BD∩α=R,
∴P,Q,R三点是平面α与平面β的公共点.
∴P,Q,R都在α与β的交线上,故P,Q,R三点共线.
课件45张PPT。第二章 点、直线、平面
之间的位置关系2.1 空间点、直线、
平面之间的位置关系
2.1 . 1 平 面登高揽胜 拓界展怀课前自主学习无限延展 平行四边形 45° 2倍 虚线 平面AC 所有点 两点 有且只有 过该点的公共直线 × √ √ 剖析题型 总结归纳课堂互动探究知识归纳 自我测评堂内归纳提升word部分: 请做: 课时分层训练
水平达标 提升能力点此进入该word板块