新课标高中数学人教A版必修2 2.2.1 直线与平面平行的判定 2.2.2 平面与平面平行的判定(课件:45张PPT+检测)

文档属性

名称 新课标高中数学人教A版必修2 2.2.1 直线与平面平行的判定 2.2.2 平面与平面平行的判定(课件:45张PPT+检测)
格式 zip
文件大小 4.0MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2020-04-05 19:22:59

文档简介

第二章 2.2 直线、平面平行的判定及其性质
2.2.1 直线与平面平行的判定
2.2.2 平面与平面平行的判定
课时分层训练
1.下列选项中,一定能得出直线m与平面α平行的是(  )
A.直线m在平面α外
B.直线m与平面α内的两条直线平行
C.平面α外的直线m与平面内的一条直线平行
D.直线m与平面α内的一条直线平行
解析:选C 选项A不符合题意,因为直线m在平面α外也包括直线与平面相交;选项B与D不符合题意,因为缺少条件m?α;选项C中,由直线与平面平行的判定定理,知直线m与平面α平行,故选项C符合题意.
2.已知α,β是两个不重合的平面,下列选项中,一定能得出平面α与平面β平行的是(  )
A.平面α内有一条直线与平面β平行
B.平面α内有两条直线与平面β平行
C.平面α内有一条直线与平面β内的一条直线平行
D.平面α与平面β不相交
解析:选D 选项A、C不正确,因为两个平面可能相交;选项B不正确,因为平面α内的这两条直线必须相交才能得到平面α与平面β平行;选项D正确,因为两个平面的位置关系只有相交与平行两种.故选D.
3.在三棱锥A-BCD中,E,F分别是AB和BC上的点,若AE∶EB=CF∶FB=2∶5,则直线AC与平面DEF的位置关系是(  )
A.平行         
B.相交
C.直线AC在平面DEF内
D.不能确定
解析:选A ∵AE∶EB=CF∶FB=2∶5,∴EF∥AC.又EF?平面DEF,AC?平面DEF,∴AC∥平面DEF.
4.已知a,b,c,d是四条直线,α,β是两个不重合的平面,若a∥b∥c∥d,a?α,b?α,c?β,d?β,则α与β的位置关系是(  )
A.平行 B.相交
C.平行或相交 D.以上都不对
解析:选C 根据图1和图2可知α与β平行或相交.
5.如图,下列正三棱柱ABC-A1B1C1中,若M,N,P分别为其所在棱的中点,则不能得出AB∥平面MNP的是(  )
解析:选C 在图A、B中,易知AB∥A1B1∥MN,
所以AB∥平面MNP;在图D中,易知AB∥PN,所以AB∥平面MNP.故选C.
6.已知l,m是两条直线,α是平面,若要得到“l∥α”,则需要在条件“m?α,l∥m”中另外添加的一个条件是________.
解析:根据直线与平面平行的判定定理,知需要添加的一个条件是“l?α”.
答案:l?α
7.已知A,B两点是平面α外两点,则过A,B与α平行的平面有________个.
解析:当A,B两点在平面α异侧时,不存在这样的平面.当A,B两点在平面同侧时,若直线AB∥α,则存在一个,否则不存在.
答案:0或1
8.如图,在五面体FE-ABCD中,四边形CDEF为矩形,M,N分别是BF,BC的中点,则MN与平面ADE的位置关系是________.
解析:∵M,N分别是BF,BC的中点,∴MN∥CF.又四边形CDEF为矩形,∴CF∥DE,
∴MN∥DE.又MN?平面ADE,DE?平面ADE,
∴MN∥平面ADE.
答案:平行
9.如图所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD.E,F,G分别为线段PC,PD,BC的中点,现将△PDC折起,使点P?平面ABCD.
求证:平面PAB∥平面EFG.
证明:∵PE=EC,PF=FD,∴EF∥CD,
又∵CD∥AB,∴EF∥AB.
又EF?平面PAB,AB?平面PAB.∴EF∥平面PAB.
同理可证EG∥平面PAB.
又∵EF∩EG=E,∴平面PAB∥平面EFG.
10.已知正方形ABCD,如图(1)E,F分别是AB,CD的中点,将△ADE沿DE折起,如图(2)所示,求证:BF∥平面ADE.
证明:∵E,F分别为AB,CD的中点,∴EB=FD.
又∵EB∥FD,∴四边形EBFD为平行四边形,
∴BF∥ED.
∵DE?平面ADE,而BF?平面ADE,
∴BF∥平面ADE.
1.若直线l不平行于平面α,且l?α,则(  )
A.α内的所有直线与l异面
B.α内不存在与l平行的直线
C.α内存在唯一的直线与l平行
D.α内的直线与l都相交
解析:选B 若在平面α内存在与直线l平行的直线,因l?α,故l∥α,这与题意矛盾.
2.在正方体EFGH-E1F1G1H1中,下列四对截面彼此平行的一对是(  )
A.平面E1FG1与平面EGH1
B.平面FHG1与平面F1H1G
C.平面F1H1H与平面FHE1
D.平面E1HG1与平面EH1G
解析:选A 画出相应的截面如图所示,即可得答案.
3.已知P是正方体ABCD-A1B1C1D1的棱DD1上任意一点(不是端点),则在正方体的12条棱中,与平面ABP平行的有(  )
A.3个 B.6个
C.9个 D D.12个
解析:选A 因为棱AB在平面ABP内,所以只要与棱AB平行的棱都满足题意,即A1B1,D1C1,DC.
4.A,B是直线l外的两点,过A,B且和l平行的平面有(  )
A.0个 B.1个
C.无数个 D.以上都有可能
解析:选D 若AB与l平行,则和l平行的平面有无数个;若AB与l相交,则和l平行的平面没有;若AB与l异面,则和l平行的平面有一个.
5.已知三棱柱ABC-A1B1C1,D,E,F分别是棱AA1,BB1,CC1的中点,则平面DEF与平面ABC的位置关系是________.
解析:∵D,E,F分别是棱AA1,BB1,CC1的中点,
∴在平行四边形AA1B1B与平行四边形BB1C1C中,
DE∥AB,EF∥BC,∴DE∥平面ABC,EF∥平面ABC.又DE∩EF=E,∴平面DEF∥平面ABC.
答案:平行
6.如图所示,在四面体ABCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.
解析:连接AM并延长,交CD于E,连接BN,并延长交CD于F,由重心性质可知,E、F重合为一点,且该点为CD的中点E,由==,得MN∥AB.因此,MN∥平面ABC且MN∥平面ABD.
答案:平面ABC、平面ABD
7.如图是一几何体的平面展开图,其中ABCD为正方形,E,F,G,H分别为PA,PD,PC,PB的中点.在此几何体中,给出下面四个结论:
①平面EFGH∥平面ABCD;②直线PA∥平面BDG;③直线EF∥平面PBC;④直线EF∥平面BDG.其中正确的序号是________.
解析:作出立体图形,可知平面EFGH∥平面ABCD;PA∥平面BDG;EF∥HG,所以EF∥平面PBC;直线EF与平面BDG不平行.
答案:①②③
8.如图所示,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC和SC的中点.求证:平面EFG∥平面BDD1B1.
证明:如图所示,连接SB,SD,
∵F,G分别是DC,SC的中点,
∴FG∥SD.
又∵SD?平面BDD1B1,FG?平面BDD1B1,
∴FG∥平面BDD1B1.
同理可证EG∥平面BDD1B1,
又∵EG?平面EFG,
FG?平面EFG,EG∩FG=G,
∴平面EFG∥平面BDD1B1.
课件45张PPT。第二章 点、直线、平面
之间的位置关系2.2 直线、平面平行的
判定及其性质
2.2.1 直线与平面平行的判定
2.2.2 平面与平面平行的判定登高揽胜 拓界展怀课前自主学习平面外 平面内 平行 两条相交直线 × × √ √ 剖析题型 总结归纳课堂互动探究知识归纳 自我测评堂内归纳提升word部分: 请做: 课时分层训练
水平达标 提升能力点此进入该word板块