第二章 2.3 直线、平面垂直的判定及其性质
2.3.3 直线与平面垂直的性质
2.3.4 平面与平面垂直的性质
课时分层训练
1.设l是直线,α,β是两个不同的平面,则下列判断正确的是( )
A.若l∥α,l∥β,则α∥β
B.若l∥α,l⊥β,则α⊥β
C.若α⊥β,l⊥α,则l⊥β
D.若α⊥β,l∥α,则l⊥β
解析:选B 对于选项A,两平面可能平行也可能相交;对于选项C,直线l可能在β内也可能平行于β;对于选项D,直线l可能在β内或平行于β或与β相交.
2.已知平面α,β和直线m,l,则下列命题中正确的是( )
A.若α⊥β,α∩β=m,l⊥m,则l⊥β
B.若α∩β=m,l?α,l⊥m,则l⊥β
C.若α⊥β,l?α,则l⊥β
D.若α⊥β,α∩β=m,l?α,l⊥m,则l⊥β
解析:选D 选项A缺少了条件:l?α;选项B缺少了条件:α⊥β;选项C缺少了条件:α∩β=m,l⊥m;选项D具备了面面垂直的性质定理的全条件.
3.在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC,AD=CD,则BD与CC1( )
A.平行 B.共面
C.垂直 D.不垂直
解析:选C 如图所示,在四边形ABCD中,∵AB=BC,AD=CD.
∴BD⊥AC.∵平面AA1C1C⊥平面ABCD,平面AA1C1C∩平面ABCD=AC,BD?平面ABCD,∴BD⊥平面AA1C1C.又CC1?平面AA1C1C,∴BD⊥CC1,故选C.
4.如图,设平面α∩平面β=PQ,EG⊥平面α,FH⊥平面α,垂足分别为G,H.为使PQ⊥GH,则需增加的一个条件是( )
A.EF⊥平面α B.EF⊥平面β
C.PQ⊥GE D.PQ⊥FH
解析:选B 因为EG⊥平面α,PQ?平面α,所以EG⊥PQ.若EF⊥平面β,则由PQ?平面β,得EF⊥PQ.又EG与EF为相交直线,所以PQ⊥平面EFHG,所以PQ⊥GH,故选B.
5.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出如下命题:
①若α⊥β,α∩β=m,n?α,n⊥m,则n⊥β;
②若α⊥γ,β⊥γ,则α∥β;
③若α⊥β,m⊥β,m?/ α,则m∥α;
④若α⊥β,m∥α,则m⊥β.
其中正确命题的个数为( )
A.1 B.2
C.3 D.4
解析:选B 根据平面与平面垂直的性质知①正确;②中,α,β可能平行,也可能相交,不正确;③中,α⊥β,m⊥β,m?α时,只可能有m∥α,正确;④中,m与β的位置关系可能是m∥β或m?β或m与β相交,不正确.综上,可知正确命题的个数为2,故选B.
6.如图,平面ABC⊥平面ABD,∠ACB=90°,CA=CB,△ABD是正三角形,O为AB中点,则图中直角三角形的个数为________.
解析:∵CA=CB,O为AB的中点,∴CO⊥AB.
又平面ABC⊥平面ABD,交线为AB,
∴CO⊥平面ABD.
∵OD?平面ABD,∴CO⊥OD,
∴△COD为直角三角形.
所以图中的直角三角形有△AOC,△COB,△ABC,△AOD,△BOD,△COD共6个.
答案:6
7.如图,直二面角α-l-β中,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD的长为________.
解析:如图,连接BC,
∵二角面α-l-β为直二面角,
AC?α,且AC⊥l,∴AC⊥β.
又BC?β,∴AC⊥BC,
∴BC2=AB2-AC2=3,
又BD⊥CD,
∴CD==.
答案:
8.已知m,n是直线,α,β,γ是平面,给出下列说法:
①若α⊥β,α∩β=m,n⊥m,则n⊥α或n⊥β;
②若α∥β,α∩γ=m,β∩γ=n,则m∥n;
③若m不垂直于α,则m不可能垂直于α内的无数条直线;
④若α∩β=m,n∥m且n?α,n?β,则n∥α且n∥β.
其中正确的说法序号是________(注:把你认为正确的说法的序号都填上).
解析:①错,垂直于交线,不一定垂直平面;②对;③错,凡是平面内垂直于m的射影的直线,m都与它们垂直;④对.
答案:②④
9.如图,三棱锥P-ABC中,已知△ABC是等腰直角三角形,∠ABC=90°,△PAC是直角三角形,∠PAC=90°,∠ACP=30°,平面PAC⊥平面ABC.求证:平面PAB⊥平面PBC.
证明:∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PA⊥AC,∴PA⊥平面ABC.
又BC?平面ABC,∴PA⊥BC.
又∵AB⊥BC,AB∩PA=A,AB?平面PAB,
PA?平面PAB,
∴BC⊥平面PAB.又BC?平面PBC,
∴平面PAB⊥平面PBC.
10.如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,AC⊥BC,且AC=BC.
(1)求证:AM⊥平面EBC;
(2)求直线EC与平面ABE所成角正弦值.
解:(1)证明:∵平面ACDE⊥平面ABC,平面ACDE∩平面ABC=AC,BC⊥AC,
∴BC⊥平面ACDE.
又AM?平面ACDE,∴BC⊥AM.
∵四边形ACDE是正方形,∴AM⊥CE.
又BC∩CE=C,∴AM⊥平面EBC.
(2)取AB的中点F,连接CF,EF.
∵EA⊥AC,平面ACDE⊥平面ABC,平面ACDE∩平面ABC=AC,
∴EA⊥平面ABC,∴EA⊥CF.
又AC=BC,∴CF⊥AB.
∵EA∩AB=A,
∴CF⊥平面AEB,
∴∠CEF即为直线EC与平面ABE所成的角.
在Rt△CFE中,CF=,FE=,
tan∠CEF==.
∴直线EC与平面ABE所成角的正弦值为.
1.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一个底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是( )
A.相交 B.平行
C.异面 D.相交或平行
解析:选B 圆柱的母线垂直于圆柱的底面,所作的垂线也垂直于底面,由线面垂直的性质定理可知,二者平行.
2.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )
A.若α,β垂直于同一平面,则α与β平行
B.若m,n平行于同一平面,则m与n平行
C.若α,β不平行,则在α内不存在与β平行的直线
D.若m,n不平行,则m与n不可能垂直于同一平面
解析:选D A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m?α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n,所以原命题正确,故D项正确.
3.设m,n是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是( )
A.若α⊥β,m?α,n?β,则m⊥n
B.若α∥β,m?α,n?β,则m∥n
C.若m⊥n,m?α,n?β,则α⊥β
D.若m⊥α,m∥n,n∥β,则α⊥β
解析:选D A中m,n可能为平行、垂直、异面直线;B中m,n可能为异面直线;C中m应与β中两条相交直线垂直时结论才成立.
4.在三棱锥P-ABC中,平面PAC⊥平面ABC,∠PCA=90°,△ABC是边长为4的正三角形,PC=4,M是AB边上的一动点,则PM的最小值为( )
A.2 B.2
C.4 D.4
解析:选B 连接CM,则由题意PC⊥平面ABC,可得PC⊥CM,所以PM= ,要求PM的最小值只需求出CM的最小值即可,在△ABC中,当CM⊥AB时CM有最小值,此时有CM=4×=2,所以PM的最小值为2.
5.设两个平面α,β,直线l,下列三个条件:①l⊥α;②l∥β;③α⊥β.若以其中两个作为前提条件,另一个作为结论,则可构成三个命题,这三个命题中,正确命题的个数为________.
解析:①②作为前提条件,③作为结论构成的命题正确,过l作一平面与β交于l′,则l∥l′,所以l′⊥α,故α⊥β;①③作为前提条件,②作为结论构成的命题错,这时可能有l?β;②③作为前提条件,①作为结论构成的命题错,这时l与α的各种位置关系都可能存在.
答案:1
6.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E是BC1的中点,则直线DE与平面ABCD所成角的正切值为________.
解析:取BC的中点为F,连接EF,DF,易知∠EDF为直线DE与平面ABCD所成的角,tan ∠EDF==.
答案:
7.经过平面α外一点和平面α内一点与平面α垂直的平面有________个.
解析:设平面外的点为A,面内的点为B,过点A作面α的垂线l,若点B恰为垂足,则所有过AB的平面均与α垂直,此时有无数个平面与α垂直;若点B不是垂足,则l与点B确定唯一平面β满足α⊥β.
答案:1或无数
8.如图,四棱锥P-ABCD的底面是边长为a的菱形,∠BCD=120°,平面PCD⊥平面ABCD,PC=a,PD=a,E为PA的中点.求证:平面EDB⊥平面ABCD.
证明:设AC∩BD=O,
连接EO,则EO∥PC.
∵PC=CD=a,PD=a,
∴PC2+CD2=PD2,
∴PC⊥CD.
∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,
∴PC⊥平面ABCD,
∴EO⊥平面ABCD.
又EO?平面EDB,
故有平面EDB⊥平面ABCD.
课件42张PPT。第二章 点、直线、平面
之间的位置关系2.3 直线、平面垂直的
判定及其性质
2.3.3 直线与平面垂直的性质
2.3.4 平面与平面垂直的性质登高揽胜 拓界展怀课前自主学习平行 a∥b 一个平面内 交线 垂直 线面 √ √ × √ 剖析题型 总结归纳课堂互动探究知识归纳 自我测评堂内归纳提升word部分: 请做: 课时分层训练
水平达标 提升能力点此进入该word板块