第一章 1.1 空间几何体的结构
第一课时 棱柱、棱锥、棱台的结构特征
课时分层训练
1.下面的几何体中是棱柱的有( )
A.3个 B.4个
C.5个 D.6个
解析:选C 棱柱有三个特征:(1)有两个面相互平行;(2)其余各面是四边形;(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合,故选C.
2.下面图形中,为棱锥的是( )
A.①③ B.①③④
C.①②④ D.①②
解析:选C 根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.
3.下列图形中,是棱台的是( )
解析:选C 由棱台的定义知,A、D的侧棱延长线不交于一点,所以不是棱台;B中两个面不平行,不是棱台,只有C符合棱台的定义,故选C.
4.一个棱锥的各棱长都相等,那么这个棱锥一定不是( )
A.三棱锥 B.四棱锥
C.五棱锥 D.六棱锥
解析:选D 由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.
5.下列图形中,不能折成三棱柱的是( )
解析:选C C中,两个底面均在上面,因此不能折成三棱柱,其余均能折为三棱柱.
6.四棱柱有________条侧棱,________个顶点.
解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得).
答案:4 8
7.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.
解析:面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱.
答案:5 6 9
8.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,则每条侧棱长为________ cm.
解析:该棱柱为五棱柱,共有5条侧棱,每条侧棱长都相等,∴每条侧棱长为12 cm.
答案:12
9.根据下列关于空间几何体的描述,说出几何体的名称:
(1)由6个平行四边形围成的几何体;
(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;
(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.
解:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.
(2)这是一个六棱锥.
(3)这是一个三棱台.
10.如图所示是一个三棱台ABC-A′B′C′,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.
解:过A′,B,C三点作一个平面,再过A′,B,C′作一个平面,就把三棱台ABC-A′B′C′分成三部分,形成的三个三棱锥分别是A′-ABC,B-A′B′C′,A′-BCC′.(答案不唯一)
1.关于空间几何体的结构特征,下列说法不正确的是( )
A.棱柱的侧棱长都相等
B.四棱锥有五个顶点
C.三棱台的上、下底面是相似三角形
D.有的棱台的侧棱长都相等
解析:选B 根据棱锥顶点的定义可知,四棱锥仅有一个顶点.故选B.
2.下列说法正确的是( )
A.棱柱的底面一定是平行四边形
B.棱锥的底面一定是三角形
C.棱锥被平面分成的两部分不可能都是棱锥
D.棱柱被平面分成的两部分可能都是棱柱
解析:选D 棱柱与棱锥的底面可以是任意多边形,A、B不正确;过棱锥的顶点的纵截面可以把棱锥分成两个棱锥,C不正确.
3.下列图形经过折叠可以围成一个棱柱的是( )
解析:选D A、B、C中底面图形的边数与侧面的个数不一致,故不能围成棱柱.故选D.
4.棱台不具有的性质是( )
A.两底面相似
B.侧面都是梯形
C.侧棱都相等
D.侧棱延长后都相交于一点
解析:选C 只有正棱台才具有侧棱都相等的性质.
5.一个无盖的正方体盒子的平面展开图如图所示,A,B,C是展开图上的三点,则在正方体盒子中,∠ABC=________.
解析:将平面图形翻折,折成空间图形,
可得∠ABC=60°.
答案:60°
6.如图,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________ cm.
解析:由题意,若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是 cm.故沿正方体表面从点A到点M的最短路程是 cm.
答案:
7.(2019·广西贵港覃塘高一月考)正方体各面所在的平面将空间分成________个部分.
解析:正方体竖直的四个侧面将空间分成9个部分,易知正方体各面所在平面将空间分成27个部分.
答案:27
8.如图在正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.
问:(1)折起后形成的几何体是什么几何体?
(2)若正方形边长为2a,则每个面的三角形面积为多少?
解:(1)如图折起后的几何体是三棱锥.
(2)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,
S△DEF=a2.
课件49张PPT。第一章 空间几何体 1.1 空间几何体的结构
第一课时 棱柱、棱锥、棱台的结构特征登高揽胜 拓界展怀课前自主学习形状 大小 空间图形 平面多边形 平面图形 定直线 平行 四边形 平行 平行 其余各面 公共边 公共顶点 多边形 三角形 多边形面 三角形面 公共边 公共顶点 平行于棱锥底面 截面 底面 剖析题型 总结归纳课堂互动探究知识归纳 自我测评堂内归纳提升word部分: 请做: 课时分层训练
水平达标 提升能力点此进入该word板块第一章 1.1 空间几何体的结构
第二课时 圆柱、圆锥、圆台、球、简单组合体的结构特征
课时分层训练
1.如图所示的图形中有( )
A.圆柱、圆锥、圆台和球 B.圆柱、球和圆锥
C.球、圆柱和圆台 D.棱柱、棱锥、圆锥和球
解析:选B 根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台,故应选B.
2.下列命题中正确的是( )
A.将正方形旋转不可能形成圆柱
B.以直角梯形的一腰为轴旋转所得的旋转体是圆台
C.圆柱、圆锥、圆台的底面都是圆面
D.通过圆台侧面上一点,有无数条母线
解析:选C 将正方形绕其一边所在直线旋转可以形成圆柱,所以A错误;B中必须以垂直于底边的腰为轴旋转才能得到圆台,所以B错误;通过圆台侧面上一点,只有一条母线,所以D错误,故选C.
3.截一个几何体,所得各截面都是圆面,则这个几何体一定是( )
A.圆柱 B.圆锥
C.球 D.圆台
解析:选C 由球的定义知选C.
4.将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的底面周长是( )
A.4π B.8π
C.2π D.π
解析:选C 边长为1的正方形以其一边所在的直线为旋转轴旋转一周,得到的几何体是底面半径为1的圆,其周长为2π·1=2π.
5.一个直角三角形绕斜边旋转360°形成的空间几何体是( )
A.一个圆锥 B.一个圆锥和一个圆柱
C.两个圆锥 D.一个圆锥和一个圆台
答案:C
6.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是__________________________.
解析:由圆锥的定义知是两个同底的圆锥形成的组合体.
答案:两个同底的圆锥组合体
7.一个圆锥截成圆台,已知圆台的上下底面半径的比是1∶4,截去小圆锥的母线长为3 cm,则圆台的母线长为________ cm.
解析:如图所示,设圆台的母线长为x cm,
截得的圆台的上、下底半径分别为r cm,4r cm,
根据三角形相似的性质,得=,解得x=9(cm).
答案:9
8.如图是一个几何体的表面展成的平面图形,则这个几何体是________.
答案:圆柱
9.如图,在△ABC中,∠ABC=120°,它绕AB边所在直线旋转一周后形成的几何体结构如何?
解:旋转后的几何体结构如下:是一个大圆锥挖去了一个同底面的小圆锥.
10.指出图中的三个几何体分别是由哪些简单几何体组成的.
解:(1)几何体由一个圆锥、一个圆柱和一个圆台拼接而成.
(2)几何体由一个六棱柱和一个圆柱拼接而成.
(3)几何体由一个球和一个圆柱中挖去一个以圆柱下底面为底面、上底面圆心为顶点的圆锥拼接而成.
1.下列结论正确的是( )
A.用一个平面去截圆锥,得到一个圆锥和一个圆台
B.经过球面上不同的两点只能作一个最大的圆
C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是正六棱锥
D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
解析:选D 需用平行于圆锥底面的平面截才能得到圆锥和圆台,故A错误;若球面上不同的两点恰为最大的圆的直径的端点,则过此两点的大圆有无数个,故B错误;正六棱锥的侧棱长必然要大于底面边长,故C错误.故选D.
2.如图所示的几何体,关于其结构特征,下列说法不正确的是( )
A.该几何体是由2个同底的四棱锥组成的几何体
B.该几何体有12条棱、6个顶点
C.该几何体有8个面,并且各面均为三角形
D.该几何体有9个面,其中一个面是四边形,其余各面均为三角形
解析:选D 该几何体用平面ABCD可分割成两个四棱锥,因此它是这两个四棱锥的组合体,因而四边形ABCD是它的一个截面而不是一个面.故D说法不正确.
3.用一张长为8,宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是( )
A.2 B.2π
C.或 D.或
解析:选C 如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=.所以选C.
4.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面、下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是( )
A.①② B.①③
C.①④ D.①⑤
解析:选D 一个圆柱挖去一个圆锥后,剩下的几何体被一个竖直的平面所截后,圆柱的轮廓是矩形除去一条边,圆锥的轮廓是三角形除去一条边或抛物线的一部分,故选D.
5.一个无盖的正方体盒子展开后的平面图如图所示,A,B,C是展开图上的三点,则在正方体盒子中∠ABC=________.
解析:如图所示,将平面图折成正方体.很明显点A,B,C是上底面正方形的三个顶点,则∠ABC=90°.
答案:90°
6.在半径为13的球面上有A、B、C三点,其中AC=6,BC=8,AB=10,则球心到经过这三个点的截面的距离为________.
解析:由线段的长度知△ABC是以AB为斜边的直角三角形,所以其外接圆的半径r==5,所以d==12.
答案:12
7.用一个平面去截几何体,如果截面是三角形,那么这个几何体可能是下面哪几种:________(填序号).
①棱柱;②棱锥;③棱台;④圆柱;⑤圆锥;⑥圆台;⑦球.
解析:可能是棱柱、棱锥、棱台与圆锥.
答案:①②③⑤
8.圆台的母线长为2a,母线与轴的夹角为30°,一个底面的半径是另一个底面的半径的2倍,求两底面的半径及两底面面积之和.
解:设圆台上底面半径为r,则下底面半径为2r.将圆台还原为圆锥,如图,则有∠ABO=30°.
在Rt△BO′A′中,=sin 30°,
∴BA′=2r.
在Rt△BOA中,=sin 30°,
∴BA=4r.
又BA-BA′=AA′,即4r-2r=2a,∴r=a.
∴S=πr2+π(2r)2=5πr2=5πa2.∴圆台上底面半径为a,下底面半径为2a,两底面面积之和为5πa2.
课件47张PPT。第一章 空间几何体 1.1 空间几何体的结构
第二课时 圆柱、圆锥、圆台、球、简单组合体的结构特征登高揽胜 拓界展怀课前自主学习矩形的一边 旋转体 表示它的轴的字母 一条直角边 圆锥 表示它的轴的字母 圆锥SO √ × 截面 圆台 表示它的轴 圆台O′O × √ 直径 表示球心 球O 简单几何体 拼接 截去 挖去 剖析题型 总结归纳课堂互动探究知识归纳 自我测评堂内归纳提升word部分: 请做: 课时分层训练
水平达标 提升能力点此进入该word板块