高中数学高二导学案:期末复习 椭圆与双曲线(Word版)

文档属性

名称 高中数学高二导学案:期末复习 椭圆与双曲线(Word版)
格式 zip
文件大小 1.2MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2020-04-08 15:59:09

图片预览

文档简介

选修1-1/2-1第二章椭圆与双曲线 期末复习
【考情解读】
1.掌握椭圆的定义、几何图形、标准方程及简单几何性质.
2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.
考点一 椭圆与双曲线定义及其应用
【例1】 (1)(如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是(  )
椭圆 B.双曲线 C.抛物线 D.圆
(2)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为椭圆C上的一点,且1⊥2.若△PF1F2的面积为9,则b=________.
【变式探究】 (1)已知F1,F2是椭圆+=1的两焦点,过点F2的直线交椭圆于A,B两点,在△AF1B中,若有两边之和是10,则第三边的长度为(  )
A.6 B.5
C.4 D.3
(2)与圆C1:(x+3)2+y2=1外切,且与圆C2:(x-3)2+y2=81内切的动圆圆心P的轨迹方程为________.
【例2】 (1)已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,则动圆圆心M的轨迹方程为________.
(2)已知双曲线x2-y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值为________.
【变式探究】
(1)设P是双曲线-=1上一点,F1,F2分别是双曲线左、右焦点,若|PF1|=9,则|PF2|=(  )
A.1 B.17
C.1或17 D.以上答案均不对
(2)已知F是双曲线-=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为(  )
A.5 B.5+4 C.7 D.9
考点二 求椭圆与双曲线的标准方程
【例3】 (1)在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么椭圆C的方程为________.
(2)设F1,F2分别是椭圆E:x2+=1(0(3)已知椭圆的长轴长是短轴长的3倍,且过点A(3,0),并且以坐标轴为对称轴,则椭圆的标准方程为________.
【变式探究】 求满足下列条件的椭圆的标准方程:
(1)与椭圆+=1有相同的离心率且经过点(2,-);
(2)已知点P在以坐标轴为对称轴的椭圆上,且P到两焦点的距离分别为5,3,过P且与长轴垂直的直线恰过椭圆的一个焦点;
(3)经过两点,.
【例4】 (1)(天津卷)已知双曲线-=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为(  )
A.-=1 B.-=1
C.-=1 D.-=1
(2)设双曲线与椭圆+=1有共同的焦点,且与椭圆相交,一个交点的坐标为(,4),则此双曲线的标准方程是________.
【变式探究】 根据下列条件,求双曲线的标准方程:
(1)虚轴长为12,离心率为;
(2)焦距为26,且经过点M(0,12);
(3)经过两点P(-3,2)和Q(-6,-7).
考点三 椭圆、双曲线的几何性质
【例5】 (1)(江西卷)过点M(1,1)作斜率为-的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于________.
(2)(包头测试与评估)已知椭圆+=1的左顶点为A,左焦点为F,点P为该椭圆上任意一点;若该椭圆的上顶点到焦点的距离为2,离心率e=,则·的取值范围是________.
【变式探究】 已知椭圆C1:+=1(a>b>0)的右焦点为F,上顶点为A,P为C1上任一点,MN是圆C2:x2+(y-3)2=1的一条直径,与AF平行且在y轴上的截距为3-的直线l恰好与圆C2相切.
(1)求椭圆C1的离心率; (2)若·的最大值为49,求椭圆C1的方程.
【例6】 (1)设F1,F2分别为双曲线-=1(a>0,b>0)的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为(  )
A.3x±4y=0 B.3x±5y=0 C.4x±3y=0 D.5x+4y=0
(2)(浙江卷)设直线x-3y+m=0(m≠0)与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是________.
【变式探究】 已知双曲线-=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),若双曲线存在一点P使=,则该双曲线的离心率的取值范围是________.
考点四 直线与椭圆、双曲线的位置关系
【例7】 (四川卷)已知椭圆C:+=1(a>b>0)的左焦点为F(-2,0),离心率为.
(1)求椭圆C的标准方程;
(2)设O为坐标原点,T为直线x=-3上一点,过F作TF的垂线交椭圆于P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.
【变式探究】 (陕西卷)已知椭圆+=1(a>b>0)经过点(0,),离心率为,左、右焦点分别为F1(-c,0),F2(c,0).
(1)求椭圆的方程;
(2)若直线l:y=-x+m与椭圆交于A,B两点,与以F1F2为直径的圆交于C,D两点,且满足=,求直线l的方程.
【例8】 已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2.
(1)求双曲线C的方程;
(2)若直线l:y=kx+与双曲线C左支交于A,B两点,求k的取值范围.
【变式探究】 设a,b是关于t的方程t2cos θ+tsin θ=0的两个不等实根,则过A(a,a2),B(b,b2)两点的直线与双曲线-=1的公共点的个数为(  )
A.0 B.1 C.2 D.3
考点五 圆锥曲线上点的对称问题
圆锥曲线上两点关于直线的对称问题是高考命题的热点,该问题集中点弦、直线与圆锥曲线的位置关系、点与圆锥曲线的位置关系、方程、函数、不等式、点差法等重要数学知识和方法于一体,符合在知识网络交汇处、思想方法的交织线上和能力层次的交叉区内设置问题的命题特点,此类试题综合性强,难度大,对数学知识和能力的考查具有一定的深度,具有很好的选拔功能,是高考命题的热点.圆锥曲线上两点关于直线的对称问题主要有联立方程法和点差法两种解法.
【例5】 椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=,其中∠F1AF2的平分线所在的直线l的方程为y=2x-1.
(1)求椭圆E的方程;
(2)在椭圆上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.
【真题感悟】
1.已知椭圆()的左焦点为,则( )
A. B. C. D.
2.已知椭圆的右焦点为.短轴的一个端点为,直线交椭圆于两点.若,点到直线的距离不小于,则椭圆的离心率的取值范围是( )
A. B. C. D.
3.椭圆()的右焦点关于直线的对称点在椭圆上,则椭圆的离心率是 .
4.设椭圆E的方程为点O为坐标原点,点A的坐标为,点B的坐标为(0,b),点M在线段AB上,满足直线OM的斜率为.
(Ⅰ)求E的离心率e;
(Ⅱ)设点C的坐标为(0,-b),N为线段AC的中点,证明:MNAB.
.
5.本小题满分14分)已知椭圆,过点且不过点的直线与椭圆交于,
两点,直线与直线交于点.
(I)求椭圆的离心率;
(II)若垂直于轴,求直线的斜率;
(III)试判断直线与直线的位置关系,并说明理由.
6.(本小题满分13分)已知抛物线的焦点F也是椭圆
的一个焦点,与的公共弦长为,过点F的直线与相交于两点,与相交于两点,且与同向.
(I)求的方程;
(II)若,求直线的斜率.
(I) ;(II) .
7.平面直角坐标系中,已知椭圆:的离心率为,且点(,)在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆:,为椭圆上任意一点,过点的直线交椭圆于两点,射线交椭圆于点.
(i)求的值;
(ii)求面积的最大值.
8.如图,椭圆经过点,且离心率为.
(I)求椭圆的方程;
(II)经过点,且斜率为的直线与椭圆交于不同两点(均异于点),证明:直线与的斜率之和为2.
9.如图,椭圆E:(a>b>0)的离心率是,点P(0,1)在短轴CD上,且=-1
(Ⅰ)求椭圆E的方程;
(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得为定值?若存在,求λ的值;若不存在,请说明理由.
10.(本小题满分14分) 已知椭圆的上顶点为B,左焦点为,离心率为,
(I)求直线BF的斜率;
(II)设直线BF与椭圆交于点P(P异于点B),过点B且垂直于BP的直线与椭圆交于点Q(Q异于点B)直线PQ与y轴交于点M,.
(i)求的值;
(ii)若,求椭圆的方程.
1.已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程.
(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.
①证明:OT平分线段PQ(其中O为坐标原点);
②当最小时,求点T的坐标.
2.设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为________.
3.已知椭圆C:x2+2y2=4.
(1)求椭圆C的离心率;
(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,试判断直线AB与圆x2+y2=2的位置关系,并证明你的结论.
4.设P,Q分别为圆x2+(y-6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是(  )
A.5 B.+
C.7+ D.6
5.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为(  )[来
A. B. C.3 D.2
6.如图1-7,O为坐标原点,椭圆C1:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2:-=1的左、右焦点分别为F3,F4,离心率为e2.已知e1e2=,且|F2F4|=-1.
(1)求C1,C2的方程;
(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点.当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.
图1-7
7.过点M(1,1)作斜率为-的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于________.
8.已知椭圆C:+=1,点M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=______.
9.圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成—个三角形,当该三角形面积最小时,切点为P(如图1-6所示).双曲线C1:-=1过点P且离心率为.
图1-6
(1)求C1的方程;
(2)椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点.若以线段AB为直径的圆过点P,求l的方程.
10.已知椭圆C:+=1(a>b>0)的左、右焦点为F1,F2,离心率为,过F2的直线l交C于A,B两点.若△AF1B的周长为4,则C的方程为(  )
A.+=1 B.+y2=1
C.+=1 D.+=1
11. 已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.
12.设F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=
5|F1N|,求a,b.
13.已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为-=1,C1与C2的离心率之积为,则C2的渐近线方程为(  )
A. x±y=0 B. x±y=0
C. x±2y=0 D. 2x±y=0
14.如图1-5所示,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.
(1)求a,b的值;
(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.
图1-5
15如图1-5所示,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.
(1)求a,b的值;
(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.
图1-5
16.设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=|F1F2|.[来
(1)求椭圆的离心率;
(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.
17.如图1-6,设椭圆C:+=1(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.
(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;
(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a-b.
图1-6
18.如图1-4所示,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,=2,△DF1F2的面积为.
(1)求椭圆的标准方程;
(2)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.
图1-4
19.从椭圆+=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是(  )
A. B.
C. D.
20.如图,点P(0,-1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.

(1)求椭圆C1的方程;
(2)求△ABD面积取最大值时直线l1的方程.
【押题专练】
1.设F1,F2分别是椭圆+=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点的距离为(  )
A.4 B.3
C.2 D.5
2.已知椭圆+=1的焦距为4,则m等于(  )
A.4 B.8
C.4或8 D.以上均不对
3.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是(  )
A.+=1 B.+=1
C.+=1 D.+y2=1
4.已知椭圆+=1上有一点P,F1,F2是椭圆的左、右焦点,若△F1PF2为直角三角形,则这样的点P有(  )
A.3个 B.4个 C.6个 D.8个
5.已知椭圆C:+=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=,则C的离心率为(  )
A. B. C. D.
6.设F1,F2分别是椭圆E:+=1的左、右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列,则|AB|=(  )
A. B.3 C. D.2
7.设F1,F2分别是椭圆+=1的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则|PM|+|PF1|的最大值为(  )
A.10 B.12 C.15 D.18
8.已知P为椭圆+=1上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为________.
9.已知椭圆+=1(a>b>0)的离心率等于,其焦点分别为A,B,C为椭圆上异于长轴端点的任意一点,则在△ABC中,的值等于________.
10.已知F1(-c,0),F2(c,0)为椭圆+=1(a>b>0)的两个焦点,P为椭圆上一点,且·=c2,则此椭圆离心率的取值范围是________.
11.椭圆+=1(a为定值,且a>)的左焦点为F,直线x=m与椭圆相交于点A,B.若△FAB的周长的最大值是12,则该椭圆的离心率是________.