正方形教学设计
一、教学目的
1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.
2.理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.
二、重点、难点
1.教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系.
2.教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.
三、教学过程
(一)创设情境,导入新知
1.导言 我们已学习了矩形、菱形,它们都是特殊的平行四边形.
2.抢答 (1)让学生根据所准备的模型分别叙述矩形、菱形的定义及其性质.
(2)平行四边形,矩形,菱形的内在联系.
3.引人 演示模型
[问题]根据小学学过的正方形的知识,你能说出正方形的意义吗?
[定义]有一组邻边相等,有一个角是直角的平行四边形叫做正方形.
正方形是在什么前提下定义的?
[思考]如果四边形ABCD已经是一个矩形(或者菱形),那么再加上什么条件就可以变为正方形?
(二)合作交流,探究新知
1.正方形的判定
[探究] 操作1 你能否利用手中的矩形白纸裁出一个正方形呢?并请你把刚才所做的实验用图形表示出来.然后与邻位同学交流一下,你能说说矩形与正方形的关系吗?
正方形的判定2 有一组邻边相等的矩形是正方形.
操作2 你能否利用手中的可以活动的菱形模型变成一个正方形吗?如何变?请演示并画出图形.
正方形的 判定 3 有一个角是直角的菱形是正方形.
[思考] 正方形与矩形、菱形、平行四边形间的关系?
[归纳]正方形与矩形、菱形、平行四边形间的关系 如图.
2.正方形的性质
[交流]根据上述关系可知,正方形既是特殊的矩 形、又是特殊的菱形,更是的特殊的平行四边形,你能说出正方形的性质吗?
从边、角、对角线等方面考虑.
性质1:正方形的四条边都相等,四个角都是直角.
性质2:正方形的两条对角线相等且互相垂直平分,每条对角线平分一组对角.
[问题]正方形是中心对称图形吗? 是轴对称图形吗?
对称性:正方形是中心对称图形;同时还是轴对称图形,它有四条对称轴(两条对角线,两组对边的中垂线),对称轴通过对称中心.
正方形具有平行四边形、矩形、菱形的一切性质.
(三)例题讲解
求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.
已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图).
求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.
证明:∵ 四边形ABCD是正方形,
∴ AC=BD, AC⊥BD,
AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分).
∴ △ABO、△BCO、△CDO、△DAO都是等腰直角三角形,
并且 △ABO ≌△BCO≌△CDO≌△DAO.
(四)应用迁移,巩固提高
已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、DN分别交l2于Q、P点.
求证:四边形PQMN是正方形.
分析:由已知可以证出四边形PQMN是矩形,再证△ABM≌△DAN,证出AM=DN,用同样的方法证AN=DP.即可证出MN=NP.从而得出结论.
证明:∵ PN⊥l1,QM⊥l1,
∴ PN∥QM,∠PNM=90°.
∵ PQ∥NM,
∴ 四边形PQMN是矩形.
∵ 四边形ABCD是正方形
(五)归纳总结、评价体验
通过这节课的学习,我们有哪些收获?
引导学生从知识内容、数学思想方法两方面进行小结.
正方形的定义、判定方法和性质.
1.正方形与 矩形,菱形,平行四边形的关系.
2.正方形的性质:
正方形的性质与平行四边形、矩形、菱形的性质可比较如下:
(师生同完成,凡是图形所具有的性质,在表中相应的空格中填上“√”,没有的性质不要填写)
(六)课后作业
1.已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.
求证:EA⊥AF.
2.已知:如图,△ABC中,∠C=90°,CD平分∠ACB,DE⊥BC于E,DF⊥AC于F.求证:四边形CFDE是正方形.
3.已知:如图,正方形ABCD中,E为BC上一点,AF平分∠DAE交CD于F,求证:AE=BE+DF.
1、 正方形定义
2、 探索矩形、菱形与正方形的关系
1. 矩形 正方形
2. 菱形 正方形
3、 例题讲解
4、 应用提高
5、 归纳总结
正方形板书设计
PAGE